
D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 1 of 99

Grant Agreement N° 872592

Deliverable D2.2
Open API Specifications Update

Contractual delivery date:

M27

Actual delivery date:
31 March 2022

Responsible partner:

P17: INDRA-Minsait, Spain

Project Title PLATOON – Digital platform and analytic tools for energy
Deliverable number D2.2
Deliverable title Open API Specifications
Author(s): INDRA-Minsait, TECN, ENG, CS, UDGA
Responsible Partner: P17– INDRA-Minsait
Date: 31.03.2023
Nature R
Distribution level (CO,

PU):
PU

Work package number WP2 – Reference Architecture, Interoperability and

Standardization
Work package leader ENG, Italy

Ref. Ares(2022)2460181 - 01/04/2022

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 2 of 99

Abstract:
This is the updated version of the original document from

M12. No reportable updates or modifications have been

notified from participating partners, as the specifications are

still being implemented in the pilots and no conclusions have

been reached yet.

A new section has been annexed in section 8.2, regarding

existing open software, such as OGEMA, responsible for

communication with proprietary energy generation/storage

and monitoring solutions and vendor data formats.

This document aims to address integration standards and

support integration patterns to enable horizontal

interoperability among various heterogeneous systems and

business applications.

Three sets of existing APIs will be described in this document:

• NGSI-LD API for the internal use between the

components within the logical PLATOON

architecture and external platforms

• Set of APIs for the relation of specific Marketplace

components

• Specific set of APIs for the Data Analytic Toolbox

components

Keyword List: API, Interoperability, Semantic Networks, NGSI-LD,

TMForum, Marketplace, OpenAPI

The research leading to these results has received funding from the European

Community's Horizon 2020 Work Programme (H2020) under grant agreement no 872592.

This report reflects the views only of the authors and does not represent the opinion of the European

Commission, and the European Commission is not responsible or liable for any use that may be made

of the information contained therein.

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 3 of 99

Editor(s): P17– INDRA-Minsait

Contributor(s): INDRA-Minsait, TECN, ENG, CS, UDGA

Reviewer(s):

Philippe Calvez (ENGIE) – Platoon Coordinator
Erik Maqueda (TECN) – Technical Coordinator
Martino Maggio (ENG) – WP leader

Vincenzo Savarino (ENG)

Approved by:

Philippe Calvez (ENGIE) – Platoon Coordinator
Erik Maqueda (TECN) – Technical Coordinator
Martino Maggio (ENG) – WP leader
Eduardo Jimenez (IND) – Exploitation Coordinator

Recommended/mandatory

readers:
Mandatory: WP2-WP6 leaders and task leaders.

Recommended: the rest of the partners

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 4 of 99

Document Description

Document Revision History

Version Date
Modifications Introduced

Modification Reason Modified by

V1 10/12/2020 First version for revision INDRA-MINSAIT

V2 14/12/2020 Added section 5 – “Analytics

toolbox APIs”
Valentín (TECN)

V3 17/12/2020 Internal review TECN Erik Maqueda

V4 17/12/2020 Internal review ENG Martino Maggio

V5 21/12/2020 Interal review ENGIE Philippe Calvez

V6 11/03/2022 First update version for revision INDRA-MINSAIT

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 5 of 99

Table of Contents

Table of Contents

Table of Contents ... 5

List of Figures .. 7

List of Tables ... 8

Terms and abbreviations .. 9

Executive Summary ... 10

1 Introduction .. 12

2 API, interoperability and semantic network general concepts 13

2.1 Open API Specifications ... 13

2.2 API design .. 15

2.3 Interoperability ... 16

2.4 Fair Data principles ... 17

2.5 Linked and non-linked data systems .. 18

2.6 RDF .. 19

2.7 JSON-LD .. 20

2.7.1 RDF Serialization/Deserialization .. 22

3 API for interoperability: NGSI-LD API ... 24

3.1 Context information management .. 24

3.2 The NGSI standard ... 25

3.3 The NGSI-LD REST API .. 28

3.3.1 NGSI-LD Information Model ... 29

3.3.1.1 Core Meta Model .. 31

3.3.1.2 Cross-domain ontology ... 32

3.3.1.3 Domain Specific ontology .. 33

3.3.2 A guide to Context .. 34

3.3.2.1 Expansion and Compaction .. 35

3.3.2.2 The Core Context .. 35

3.3.2.3 The default URL ... 36

3.3.2.4 Content-type and Context ... 36

3.3.2.5 Compound context .. 36

3.3.2.6 Value Expansion ... 37

3.3.3 Basic operations .. 38

3.3.3.1 CRUD operations view ... 39

3.3.3.2 Context Information Provision and Consumption 40

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 6 of 99

3.3.3.3 Context Subscriptions ... 44

3.3.3.4 Context Source Registration ... 45

3.3.3.5 Context Entity Batch Operations .. 46

3.3.3.6 Query Pagination .. 48

3.3.3.7 Temporal evolution ... 48

4 Marketplace: TMForum APIs .. 50

4.1 Product Catalog Management API ... 50

4.2 Order Management API ... 53

4.3 Party Management API .. 56

4.4 Usage Management API ... 60

4.5 Communication API ... 63

4.6 Customer Management API ... 65

4.7 Customer Bill Management API .. 66

5 Analytics toolbox APIs .. 69

5.1 Azure Machine Learning example ... 69

5.2 DEEP Hybrid DataCloud project: DEEPaaS API .. 72

5.3 PLATOON Analytic toolbox OpenAPI definitions ... 74

6 Reference architecture .. 77

6.1 Context Data Broker ... 78

6.2 IoT Connector .. 80

6.2.1 IoT Connector APIs .. 81

6.3 Data Connector ... 82

7 Conclusions .. 83

8 Annex 1 .. 84

8.1 IEC 61850 .. 84

8.1.1 Data models .. 85

8.1.1.1 Libiec61850 API ... 86

8.1.1.2 Client-server API .. 87

8.1.1.2.1 Reading and writing data objects .. 87

8.1.1.2.2 Data sets .. 88

8.1.1.2.3 Reports .. 89

8.1.1.2.4 Client authentication ... 90

8.1.1.3 Publisher-subscriber API .. 90

8.2 OGEMA ... 92

8.2.1 Framework architecture .. 92

8.2.2 OGEMA API .. 93

8.2.2.1 Installation and Management of applications ... 93

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 7 of 99

8.2.2.2 Resource Management .. 93

8.2.2.3 Resource Listeners .. 95

8.2.2.4 Logging ... 96

8.2.2.5 Rest Interface .. 96

8.2.2.6 Data Models .. 97

9 References .. 98

List of Figures

 Figure 1: API as a contract .. 13

 Figure 2: OpenAPI Specification .. 14

 Figure 3: OpenAPI2.0 vs OpenAPI3.0.. 15

 Figure 4: Consumer-First vs API-First approach .. 15

 Figure 5: RDF syntaxes ... 19

 Figure 6: Sample JSON document .. 20

 Figure 7: JSON-LD document using full URIS instead of terms ... 20

 Figure 8: Referencing a JSON-LD context ... 20

 Figure 9: External web resources .. 21

 Figure 10: String annotation .. 21

 Figure 11: Data types and values .. 22

 Figure 12: Interconnection of Context Information .. 24

 Figure 13: NGSIv2 data model ... 25

 Figure 14: NGSI-LD UML representation .. 26

 Figure 15: NGSI-LD Data Model ... 26

 Figure 16: NGSI-LD basic representation .. 30

 Figure 17: Overview of the NGSI-LD Information Model Structure 30

 Figure 18: NGSI-LD Core Meta-Model.. 31

 Figure 19: NGSI-LD Cross-Domain Information Model ... 33

 Figure 20: Context notion simplified .. 34

 Figure 21: JSON-LD context .. 37

 Figure 22: Example referencing a JSON-LD context ... 38

 Figure 23: Example loading a relative context .. 38

 Figure 24: NGSI-LD API operation overview .. 39

 Figure 25: NGSI-LD API Context Information .. 40

 Figure 26: Entity creation example ... 42

 Figure 27: Attribute creation example .. 42

 Figure 28: NGSI-LD Context Subscriptions ... 44

 Figure 29: NGSI-LD Context Source Registration ... 45

 Figure 30: NGSI-LD Batch operations ... 46

 Figure 31: Batch create Entity/Attribute example ... 46

 Figure 32: Batch Create/Overwrite new entities example .. 47

 Figure 33: NGSI-LD temporal representation operations ... 48

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 8 of 99

 Figure 34: TM Forum API end-to-end .. 49

 Figure 35: TMForum ecosystem APIs .. 49

 Figure 36: Product Catalog Management API Swagger operations I 50

 Figure 37: Product Catalog Management API Swagger operations II 51

 Figure 38: Product Catalog Management API Swagger operations III 51

 Figure 39: Specific catalog creation example ... 52

 Figure 40: Product Order API Swagger ProductOrder operations .. 53

 Figure 41: Product Order API Swagger cancelProductOrder operations 54

 Figure 42: Resource order retrieval example .. 54

 Figure 43: Deleting service order example ... 54

 Figure 44: Party Management API Swagger operation .. 56

 Figure 45: Individual resource retrieval example ... 57

 Figure 46: Individual resource creation example .. 57

 Figure 47: Organization resource partial update example .. 58

 Figure 48: Organization entity deletion example .. 58

 Figure 49: Usage Management Api Swagger operations .. 60

 Figure 50: Usage retrieval example .. 61

 Figure 51: Communication API Swagger operations ... 62

 Figure 52: Pre-defined message query example ... 62

 Figure 53: Customer Management API Swagger operations .. 63

 Figure 54: Customer resource creation example ... 64

 Figure 55: Customer Billing Management API Swagger operations 65

 Figure 56: Single BillCycle retrieval example .. 66

 Figure 57: DEEP as a Service API endpoint ... 71

 Figure 58: Cross pilot synergies regarding data analytics tools .. 73

 Figure 59: PLATOON reference architecture logical view .. 75

 Figure 60: IoT connector in PLATOON architecture ... 78

 Figure 61: General standard of IEC 61850 ... 82

 Figure 62: Protocol stack of of IEC 61850-90-5 ... 83

 Figure 63: Data hierarchy .. 84

List of Tables

Table 1: Context Information Provision Operations .. 41

Table 2: Context Subscription Operations ... 44

Table 3: Context Source Registration Operations .. 45

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 9 of 99

Terms and abbreviations

API Application Programming Interface

CRUD Create, Read, Update and Delete

ETSI European Telecommunications Standards Institute

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

JSON-LD JavaScript Object Notation Linked Data

LD Logical device

NGSI-LD Next Generation Service Interfaces Linked Data

OAS OpenAPI Specification

OWL Web Ontology Language

RDF Resource Description Framework

RDFS RDF Schema

REST Representational State Transfer

UI User Interface

URI Uniform Resource Identifier

URL Uniform Resource Locator

URN Uniform Resource Name

WP Work Package

XSD XML Schema Definition

YAML Yet Another Markup Language

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 10 of 99

Executive Summary

The present document is the second version of D2.2 that aims to portray any changes or updates

that may have taken place since the delivery of the original version (M12). In the 15 months

following the first hand-in, partners involved were consulted and there are no updates or

modifications to report.

In the first version, there was no mention made regarding the energy domain, OGEMA (Open

Gateway Energy Management), so a section has been added on this framework in section 8.2.

This document aims to address integration standards and support integration patterns to enable

horizontal interoperability among various heterogeneous systems and business applications.

Three sets of existing APIs will be described in this document:

• NGSI-LD API for the internal use between the components within the logical

PLATOON architecture and external platforms
• Set of APIs for the relation of specific Marketplace components
• Specific set of APIs for Data Analytic Toolbox components

Another objective is for readers without previous knowledge of APIs and the NGSI-LD API,

to be able to understand and use the NGSI-LD API. In order to meet this objective, this

document covers an extensive number of topics and themes that have been structured into four

sections as explained below.

The first section takes a look at the general concepts regarding APIs, interoperability and

semantic networks. APIs (Application Programming Interface) are described as common,

public contract and then the OpenAPI Specification is thoroughly explained as a simple format

for describing REST APIs and how this can be achieved with the Swagger tool.

In order to be able to fully understand how APIs work, the two approaches “API First” and

“Consumer First” design approaches are explained emphasizing the API development lifecycle.

Then, the concept of interoperability is introduced to highlight its importance in the exchange

of information. In this document, only the interoperability through APIs is addressed, diving

into the importance of linked and non-linked data systems so that the reader gets the full picture

of their differences, followed by an explanation of semantic networks, specifically RDF, and

how it is related to JSON-LD, which is explained in detail.

The second section dives into the specification of the NGSI-LD API which is the API

designated for interoperability. Context Information Management is first explained, followed

by the NGSI (Next Generation Service Interfaces) standard, where the data models are

explained.

After the NGSI standard is described in detail, the NGSI-LD REST API is defined. It is a new

data exchange protocol that allows the discovery and exchange of information across databases,

mobile Apps and IoT platforms. In following sub-sections, the Information Model components

are looked at, going into detail on the context and the basic operations supported by the NGSI-

LD API, with the Swagger specification and different examples.

In the next section, different APIs will be specified for the PLATOON marketplace to allow

the monetization of different kinds of assets. This ecosystem will expose its complete

functionality through the implementation of TMForum standard APIs such as the Usage

Management API, Customer Billing API, Party Management API, etc.

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 11 of 99

The following section will define the APIs for the Analytic toolbox services. This will be

formed by all the different data analytic tools developed and used in the project by the different

partners for the different use cases, divided into two main groups: Energy specific tools and

Generic tools. Two different machine learning and data analytics APIs (Azure predictive

maintenance OpenAPI and DEEPaaS API) will be explained with their respective examples of

use in PLATOON. Lastly, The PLATOON approach for the OpenAPI APIs for the Analytic

toolbox services will be defined.

Then, a look at PLATOON´S logical architecture will be taken a look at in order to see the

information flow with an emphasis on the components which will make use of the APIs

specified in this document.

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 12 of 99

1 Introduction

In this task, PLATOON will exploit the potential of service-oriented deployment principles to

mediate and transform data across a variety of systems, services and APIs. In this way, it will

address integration standards and support integration patterns, thus enabling horizontal

interoperability among various heterogeneous systems and business applications.

These will be taken into account with existing standardisation activities related to Open API,

and data interoperability, for instance NGSI-LD, Context Information Management API,

defined by ETSI ISG CIM. To support vertical interoperability with underlying technical and

energy assets, PLATOON will be leveraged on existing open software, such as Energy Gateway

responsible for communication with proprietary energy generation/storage and monitoring

solutions and vendor data formats (e.g. IEC 61850, IEC 61968 etc.).

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 13 of 99

2 API, interoperability and semantic network general concepts

In this section, the general concepts regarding APIs, interoperability and semantic networks

will be briefly explained.

2.1 Open API Specifications 1

An API (Application Programming Interface) is a common, public contract (figure 1) between

services and clients. APIs define a group of rules, specifications, protocols and functions that

applications can use to exchange information. It gets services ready for third parties to consume,

including a technical description and promoting system integration by clear contracts durable

in time. 2

The OpenAPI Specification (OAS) defines a standard, language-agnostic interface to RESTful

(Representational state transfer) APIs which allows both humans and computers to discover

and understand the capabilities of the service without access to source code, additional

documentation, or through network traffic inspection. When properly defined, a consumer can

understand and interact with the remote service with a minimal amount of implementation logic.

The OpenAPI Specification removes guesswork in calling a service in a similar way as

interfaces descriptions have for lower-level programming.

REST is a software architectural style that defines a set of constraints to be used for creating

Web services and those that conform to the REST architectural style (RESTful Web Services)

providing interoperability between computer systems on the internet. This allows requesting

systems to access and manipulate textual representations of Web resources by using a uniform

and predefined set of stateless operations.

Use cases for machine-readable API definition documents include, but are not limited to:

• interactive documentation
• clients and servers
• automation of test cases

OpenAPI documents describe API services and being independent of language, framework and

deployment technology, can be represented in either YAML3 or JSON4 formats, which may

either be produced and served statically or be generated dynamically from an application. The

Figure 1: API as a contract

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 14 of 99

files describing the RESTful API in accordance with the Swagger specification are represented

as JSON objects and conform to the JSON standards.

The Open API specification defines the world standard for RESTful APIs, and it was donated

to the Linux foundation under the OpenAPI initiative in 2015, creating a RESTful interface for

easily developing and consuming an API by effectively mapping all the resources and

operations associated with it.

The Swagger tools were developed by the team behind the original Swagger Specification.

Swagger (a project used to describe and document RESTful APIs) offers the most powerful and

easiest to use tools to take full advantage of the OpenAPI Specification.

An OpenAPI file allows the description of the whole API including:

• API endpoints (e.g. /users)
• Operations for each endpoint (e.g. GET, POST, DELETE, etc)
• Input Parameters (e.g. /users?active=true)
• Responses and format (200: {“name”: “adam”})
• Authentication (Basic Auth, Oauth2, etc)
• API meta info (contact, license, usage conditions, etc)

In summary, OpenAPI Specification offers a simple format for writing REST service contracts

(figure 2).

An OpenAPI definition can then be used by documentation generation tools (such as Swagger

as mentioned before) to display the API, code generation tools to generate servers and clients

in various programming languages, testing tools, and many other use cases.

The Open API Specification does not require rewriting existing APIs, or binding any software

to a service (which may not even be owned by the description creator). However, the service

capabilities have to be described within the OpenAPI Specification. Not all services can be

described as it is not intended to cover every style of HTTP APIs, but includes support for

REST APIs. The Open API Specification does not mandate a specific development process, but

facilitates either technique (design-first or code-first, explained in section Fehler!

Verweisquelle konnte nicht gefunden werden.) by establishing clear interactions with a

HTTP API.

Swagger allows the API structure description so that machines can read them, and by reading

the API´s structure, it can automatically build interactive API documentation. Swagger offers:

• Tags that allow operation definition and control

Figure 2: OpenAPI Specification

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 15 of 99

• Configuration

Figure 3 shows the difference between OpenAPI 2.0 and the changes included in the upgraded

version OpenAPI 3.0.

2.2 API design

There are two approaches that can be taken when designing an API. The more traditional

approach consists on creating an application with all the functionalities required for the business

logic, creating UI, back-end, etc. and then creating an API able to interact with the applications.

This approach is called Consumer-First development.

On the other hand, the API-First development begins with the API design and development. It

is an architecture that treats the user as the primary user of the application. Therefore, it requires

that the API is complete, responsive and well-documented, requiring a strong collaboration

between developers and consumers. 5 6

Figure 4 shows the differences between the two different API development approaches. The

scheme on the left represents the Consumer-First approach, while the one on the right represents

the API-First approach. In the latter one, the API interfaces are first defined with mocked data,

Figure 3: OpenAPI2.0 vs OpenAPI3.0

Figure 4: Consumer-First vs API-First approach

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 16 of 99

so that participants can consume and develop in parallel. This approach has several advantages,

such as:

• Development agility
• Time-to-market
• Better client experience.

The API development lifecycle can be categorized in the following three steps (marked on

figure 4):

1. Contract

The first step entails API design, where all the stakeholders such as POs, back-end and

developers, clients, users, etc. are involved. It is at this point that OpenAPI (OAS3) will

be leveraged for the API definition and design.

OpenAPI3 allows definition version control, allowing to track all changes, and finally

stakeholders can add to the iterations, so that the API can be accepted with the least

possible changes so that development time is minimised.

Contract can be summarized in the following:

• OpenAPI Specification definition
• Version control
• Acceptance

2. Code

• Code generation from the generated YAML/JSON

3. Contract test

These allow the verification of API request and answer schemes and its behaviour.

2.3 Interoperability

Interoperability is associated with the ability of two or more systems or components to exchange

data and use information. In this document only the interoperability through APIs will be

addressed.

An API can be thought of as the middle man that works between two applications (as explained

in section Fehler! Verweisquelle konnte nicht gefunden werden.), that accepts requests (if

allowed) and returns the data back to the requestor. The API also lets the requestor know about

the data that can be requested, exactly how to ask for the data and how it can be received.

There are several levels of interoperability identified by the existing literature: 7

• Technical Interoperability (connectivity, network) is usually associated with

hardware/software components that enable communication. It presupposes an

agreement on how the information is transported across multiple communication

networks and the protocols needed.
• Syntactic Interoperability is usually associated with data formats. Messages transferred

by communication protocols and their payload need to have a well-defined, agreed

syntax and encoding.

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 17 of 99

• Semantic Interoperability is associated with the meaning of the content that is

exchanged. This requires agreement on common concepts and their relationships. It

refers to information, is portable and well understood by any subsequent system

requesting and reviewing it.
• Organizational Interoperability is the ability of organizations to effectively

communicate and transfer meaningful information among a variety of different

information systems and infrastructures. Organizational interoperability depends on

successful technical, syntactic and semantic interoperability.

For communication across different systems, the semantic level is essential in order to achieve

interoperability, and the information exchange must refer to a commonly agreed reference

model.

Semantic interoperability is the designed property where various systems can interact with each

other and exchange data with unambiguous, shared meaning. It is achieved when there is a

generally accepted (consistent) information model/data model (defined in T2.3 “Data models”,

the current task focuses solely on API interoperability), by including information regarding the

data (metadata) and linking that element to a commonly shared vocabulary. This shared

vocabulary and the association to an ontology enable a machine-accessible representation,

making the whole input space accessible to intelligent queries and machine

reasoning/inferencing that would facilitate analysis. 8

Currently, data is often made available through RESTful APIs that form the connecting glue

between modern applications. Nearly every application use APIs to connect with corporate data

sources, third party data services or other applications. The main purpose is to deliver end users

an endpoint to which a generic input about a particular domain will be provided.

PLATOON´s role as an integrator of existing platforms, provides a meeting point for providers

and consumers where through a marketplace it will enable advertising and discovery of

offerings, give uniform access to distributed repositories and services, and billing and charging

functionalities. For this reason, an API will be specified to provide access of semantically

described data with descriptions of capabilities. Each component is able to interact with any

other component through the provided API, but also with outside components through NGSI-

LD (section Fehler! Verweisquelle konnte nicht gefunden werden.).

2.4 Fair Data principles 9

Before getting into the different interoperability components, this section will introduce the

FAIR data principles, whose aim is to meet standards of findability, accessibility,

interoperability and reusability.

There is a need from the industry´s side to make data available and usable in order to be able to

generate value, which can be directly mapped to the FAIR data principles. In a business

ecosystem that is driven by data, the data must be findable, accessible, interoperable and

supported by available legal contracts such as usage policies. These data principles are achieved

by different components/specifications that will be used/developed in PLATOON. The

following mapping can be established:

• Findable: the IDS broker enables the search of data sources and supports dataset

metadata searching.

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 18 of 99

• Accessible: NGSI-LD API and other APIs defined in this task (Marketplace and Data

Analytics Toolbox APIs) along with the PLATOON Data models defined in task T2.3

“Data models” support the access to data in a a standardized way.

• Interoperable: the NGSI-LD API information layer and the information layer from

other APIs defined in this task (Marketplace and Data Analytics Toolbox APIs) along

with the PLATOON Data models, defined in task T2.3 “Data models”, provide an

information model that acts as a foundation for semantic interoperability. By agreeing

to this standard, any component within the logical architecture is able to access the

context data.

• Reusable: the NGSI-LD API and other APIs defined in this task (Marketplace and Data

Analytics Toolbox APIs) along with the PLATOON Data models, defined in task T2.3

“Data models”, allow data reusability through the information model used, that

identifies data with an exact description. This lets all the interested platforms and apps

to use the aforementioned set of data.

PLATOON goes a step beyond and applies the same FAIR principles to the Data Analytics

Tools as defined in task T4.1 “PLATOON analytical toolbox design”.

2.5 Linked and non-linked data systems

In single isolated systems, it makes no difference whether a rich, complex linked-data

architecture is used or a simpler non-linked data system is created. However, if the data is

designed to be shared, then linked data is a requirement in order to avoid silos. External systems

cannot know about the relationships unless they are provided with a machine-readable format.
10 11

Without linked data, there is no machine-readable way to connect entities together and every

data relationship must be known in advance. In isolated systems, this is not an issue since the

system architect will know in advance what-connects-to-what.

On the other hand, with a well-defined data model using linked data, every relationship can be

predefined in advance and is discoverable. Using JSON-LD concepts (section Fehler!

Verweisquelle konnte nicht gefunden werden.), computers can easily understand indirect

relationships and can navigate between linked entities. This is why it is possible to create usable

models which are ontologically correct and attributes can be assigned directly to entities.

When creating linked data entities, it is important to use common data models, in order to be

able to easily combine data from multiple sources and remove ambiguity when comparing data

coming from different sources.

Creating linked data using fully qualified names throughout is a hassle, as each attribute would

need a URI (explained below). JSON-LD introduces the idea of the @context attribute which

can hold pointers to context definitions (explained in section Fehler! Verweisquelle konnte

nicht gefunden werden.).

URI stands for Uniform Resource Identifier and it provides a standard way for resources to be

accessed by other computers over a network or over the World Wide Web. A URI identifies a

resource either by location, by name or both. URL (Uniform Resource Locator) is a subset of

URI that specifies where an identified resource is available and the mechanism for retrieval,

defining how it can be obtained (http://, ftp://, smb://). On the other hand, a URN (Uniform

Resource Name) is location independent and allocates a resource permanently but does not

file:///C:/Downloads/NULL

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 19 of 99

indicate availability. 12 These concepts are explained in more detail in deliverables D2.3 “Data

models” and D2.4 “Data integration”.

2.6 RDF

A semantic network or frame network is a knowledge base that represents semantic relations

between concepts in a network, used as a form of knowledge representation. Semantic networks

are used when one has knowledge that is best understood as a set of concepts that are related to

one another. RDF (Resource Description Framework) has been declared as the basic model to

capture knowledge of the semantic web. 13

RDF is a framework for expressing information about resources and is intended for situations

in which information on the Web needs to be processed by applications. It provides a common

framework for expressing this information so it can be exchanged between applications without

loss of meaning, by publishing and interlinking data in the web.

RDF is a standard model for data interchange on the Web, that allows the expression of simple

facts in the form of triplets (subject, predicate and object).14 The subject and the object represent

the two resources being related, the predicate represents the nature of their relationship and this

relationship is phrased in a directional way (from subject to object) representing the property.
15

It introduces axioms for semantic graphs, making it possible to define hierarchies of classes and

properties adding the notion of domain and range for properties. Thus, RDF has features that

facilitate data merging even if the underlying schemas differ, and it specifically supports the

evolution of schemas over time without requiring all the data consumers to be changed.

RDF extends the linking structure of the Web to use URIs to name the relationship between

things as well as the two ends of the link (this is usually referred to as a “triple”). Using this

simple model, it allows structured and semi-structured data to be mixed, exposed, and shared

across different applications.

There are various concrete syntaxes for RDF, such as Turtle [TURTLE], TriG, [TRIG], and

JSON-LD [JSON-LD] as shown in figure 5. 16 17

Figure 5: RDF syntaxes

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 20 of 99

JSON-LD provides a JSON syntax for RDF graphs and datasets and it can be used to transform

JSON documents to RDF with minimal changes by offering universal identifiers for JSON

objects. This is the mechanism in which a JSON document can refer to an object described in

another JSON document elsewhere on the Web. 18

JSON-LD can also be used as RDF in conjunction with other Linked Data technologies like

SPARQL, which will be used in other PLATOON components, e.g. in order to realize queries

to the Unified Knowledge base. These concepts are explained in more detail in deliverables

D2.3 “Data models” and D2.4 “Data integration”.

2.7 JSON-LD

JSON is a lightweight, language-independent data interchange format, easy to parse and

generate (figure 6 provides an example of a JSON document). However, it is difficult to

integrate JSON from different sources and it has no built-in support for hyperlinks. 19 20

As mentioned before, Linked Data uses URIs for unambiguous identification and they provide

a way to create a network of standards-based machine interpretable data across different

documents, allowing an application to start at one piece of Linked Data and follow embedded

links to other pieces which may be hosted on different sites.

JSON-LD serializes Linked Data in JSON, primarily intended to be a way to use Linked Data

in Web-based programming environments, to build interoperable web services and to store

Linked Data in JSON-based storage engines. It is 100% compatible with JSON and on top of

all the JSON features, JSON-LD is introduced in this section and further examples will be

shown in the next sections. JSON-LD provides: 21

• a universal identifier mechanism for JSON objects via the use of URIS

• a way to disambiguate keys shared among different JSON documents and mapping them

to URIs via a context 22

Figure 6: Sample JSON document

Figure 7: JSON-LD document using full URIS instead of terms

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 21 of 99

• a mechanism in which a value in a JSON object may refer to a resource on different

platforms/webs

• the ability to annotate strings as shown in figure 10, where the value

http://manu.sporny.org/ is expressed as a JSON string.

• a way to associate datatypes with values (e.g. dates and times) 23

Figure 9: External web resources

Figure 10: String annotation

Figure 8: Referencing a JSON-LD context

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 22 of 99

• a facility to express one or more directed graphs, such as a social network in a single

document. Directed graphs mean that every property points from a note to another node

or value.

Some specific examples for PLATOON can be found in deliverables D2.3 “Data models” and

D2.4 “Data integration”.

JSON-LD is designed to be usable directly as JSON, with no RDF knowledge. JSON-LD as a

serialization format of RDF, is used by the NGSI-LD API (section Fehler! Verweisquelle

konnte nicht gefunden werden.), and is the method through which the NGSI-LD graphs can

be converted to RDF.

2.7.1 RDF Serialization/Deserialization

The process of serializing RDF as JSON-LD and deserializing JSON-LD to RDF depends on

the RDF Serialization-Deserialization Algorithms. 24 25

Figure 11: Data types and values

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 23 of 99

The procedure to deserialize a JSON-LD document to RDF involves the following steps:

1. Expand the JSON-LD documents, removing any context, thus ensuring properties, types

and values are given their full representation as URIs and expanded values.

2. Flatten the document, turning it into an array of node objects (represents zero or more

properties of a node in the graph serialized by the JSON-LD document).

3. Turn each node object into a series of triples.

Some specific examples for PLATOON can be found in deliverables D2.3 “Data models” and

D2.4 “Data integration”.

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 24 of 99

3 API for interoperability: NGSI-LD API

Several APIs will be specified in this document, the first one being NGSI-LD.

First, the Context information management will be introduced, followed by the definition of the

NGSI standard. Here, the difference between NGSIv2 and NGSI-LD will be explained in order

to be able to delve into the NGSI-LD data model.

Then, the NGSI-LD REST API, which allows the discovery and exchange of information across

databases, platforms, etc. will be explained in depth, going through the Information Model and

the different layers within the model structure.

Finally the basic operations supported by the API will be shown with CRUD operations,

Swagger specifications and different examples.

3.1 Context information management

PLATOON federated platform can be considered a set of “smart” services and these can be

depicted as interconnections of context providing services and context consuming applications

that work together to ensure that each application has the information it requires to deliver

knowledge and insight, and to exercise control. The context of an application can be regarded

as being all the relevant aspects of its operating environment that are required for it to work as

intended, sometimes needing a different mix of data (content) from one or more sources. 26

A context producer may be a sensor, a database, an open repository, etc. Figure 12 shows how

context producers and consumers are connected by a cross-connecting Context Information

Management System, where the NGSI-LD (Next Generation Service Interfaces) API is used by

data consumers to query for and receive updates on context information.

Context information is considered to be any relevant information about entities, their properties

such as temperature, location or any other such parameter, and their relationships with other

entities.

Context information is exchanged among applications, context producers and context brokers.

Figure 12: Interconnection of Context Information

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 25 of 99

3.2 The NGSI standard

Next Generation Service Interfaces (NGSI) is a specification, originally defined by Open

Mobile Alliance27 (OMA), that stipulates a model enabling the data interchange in systems

where a wide range of information, arising from different sources, must be collected and

managed. This specification provides the interfaces defining the behavior and functionality of

the components to be implemented. NGSI is the information model supporting the working

fundamentals for the Context Broker (see section Fehler! Verweisquelle konnte nicht

gefunden werden.), being the base of the architecture for the communication among

components that manage data. 28

The overall schema involves the existence of multiple entities, called context elements, which

collect information extracted from a given environment that is useful to define the status or

features of said environment. For that, two variants of the NGSI data model are currently being

used, NGSIv2 (evolution by FIWARE29 of the NGSI specification), implemented by the

RESTful NGSIv2 API, and NGSI-LD (ETSI30 standard), that extends the capabilities of the

first by including relationships that link data from different entities and can be implemented by

the NGSI-LD REST API. 31

Figure 13 summarizes the NGSIv2 data model as follows:

1. The core element is the data entity (real object with a changing state). Entities have

attributes (such as name and location) and these in turn hold metadata such as accuracy

(the accuracy of a reading).

2. Every Entity must have a type (definition of the sort of thing the entity describes).

3. Relationships can be defined in NGSIv2, but only so far as giving the attribute an

appropriate attribute name defined by convention.

NGSI-LD is an evolution of the NGSIv2 information model, which has been modified to

improve support for linked data (entity relationships), property graphs and semantics

(exploiting the capabilities offered by JSON-LD as shown in figure 14). 32

Figure 13: NGSIv2 data model

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 26 of 99

In the NGSI-LD information model, there are Entities, Properties and Relationships. Entities

(instances) can be the subject of other Properties or Relationships. In terms of the traditional

NGSI data model, Properties can be seen as the combination of an attribute (property) and its

value. Relationships allow the establishment of "links" between instances using JSON-LD

conventions. In practice, they are similar to NGSI attributes, but with a special value (named

object) which happens to be a URI which points to another entity residing in the same system

or externally.

The NGSI-LD data model is more complex than NGSIv2, with more rigid definitions of use

which leads to a navigable knowledge graph (figure 15).

1. The Entity (core element) is the informational representation of something that is

supposed to exist in the real world, physically or conceptually. For example:

Figure 14: NGSI-LD UML representation

Figure 15: NGSI-LD Data Model

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 27 of 99

"id": "urn:ngsi-ld:TemperatureSensor:001 "

It is uniquely identified by a URI and characterized by reference to one or more Entity

Types. The Entity Type categorizes the Entity into a class of similar entities or sharing

a set of characteristic properties and is also uniquely identified by a URI. It defines the

structure of the data held. For example:

"type": "TemperatureSensor"

This URI should correspond to a well-defined PLATOON data model.

 If those URIs are expected to participate in external linked data relationships they should

be allowed to be referenced.

2. Entities can have properties and relationships (attributes).

3. Property (static or dynamic characteristic of an entity) is a description instance which

associates a main characteristic to either an Entity, Relationship or another property,

where the name of each property should be a well defined URI corresponding to a

common concept found across the web or PLATOON data models. For example

http://schema.org/address is a common URI for the physical address of an item.

The property will also have a value which will reflect the state of that property (e.g.

batteryLevel). Value is a JSON value (i.e. a string, a number, true or false, an object,

an array) or a JSON-LD typed value (i.e. a string as the lexical form of the value together

with a type, defined by a XSD base type) or a JSON-LD structured value (i.e. a set, a

list, etc.)

Property may itself have further properties (properties-of-properties) which reflect

further information about the property itself.

An example of a property could be as follows:

" dateObserved": {

 "type": "Property",

 "value": { "@type": "DateTime",

 "@value": "2018-08-07T12:00:00Z"

 }

 }

4. Relationship (e.g. controlledAsset) is the description of a directed link between a

subject (NGSI-LD Entity, NGSI-LD Property or another NGSI-LD Relationship) and

an object (NGSI-LD Entity) using hasObject to define its target object.

An example of a relationship could be:

 "refPointOfInterest": {

 "type": "Relationship",

 "object": "urn:ngsi-ld:PointOfInterest:RZ:MainSquare"

 }

http://schema.org/address

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 28 of 99

5. Metadata is replaced by a nested schema of properties for each attribute, such as

measurement units, location of the sensor or acquisition date, known as properties of

properties or properties of relationships. Said nested properties include:

• GeoProperties, which involve geospatial data

• Time Related Properties, which provide acquisition date or similar information

• “unitCode” refer to Properties for measurements

• Geometry values for geospatial properties

• Time Values for time instants or intervals

The shaping of the entities will be carried out according to the NGSI-LD standard. Briefly,

entities have to define the data source, the type of data or magnitude provided, its observed

value and its measurement units, besides the location of the other related components. All these

definitions are encoded in the attributes of the entity. Additional information, such as

observation date, geospatial data or other meta-data, are included in nested attributes with the

same structure as the primary ones.

Since the context elements are structured in a nested way, they are good targets to be encoded

at ontologies with the JSON notation, which is capable of properly distributing the data

contained. Furthermore, entities represented as JSON documents can be directly persisted as

records in databases like MongoDB.

Furthermore, attributes are also used to represent relationships with other entities within the

Context Broker and other components within the PLATOON architecture, by pointing to the

URI of the corresponding mates. Thus, relationships are shaped as a list of attributes whose

values are the digital locations of the related entities.

3.3 The NGSI-LD REST API

NGSI-LD is a new data exchange protocol that allows the discovery and exchange of

information easily with open databases, mobile Apps and IoT platforms. 33 34

The NGSI-LD API (developed by ETSI ISG CIM) is a standard API for the management of

context information. It is a RESTful API leading to a simplified and accelerated development,

while at the same time supporting geo-queries, notification/subscription, federation, Linked

Data, etc. 35

The API (named NGSI-LD) aims to enable applications to discover, access, update and manage

data and context information from many different sources as well as to publish it through

interoperable data publication platforms such as Open Data platforms.

The NGSI-LD API provides access to the data through the context broker and the rest of the

PLATOON components and allows users to provide, consume and subscribe to context

information in multiple scenarios, involving multiple stakeholders. It enables close to real-time

access to information coming from different sources, as well as being able to perform updates

on context, register context providers, query information on current and historic context

information and subscribing to receive notifications of context changes.

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 29 of 99

3.3.1 NGSI-LD Information Model

The NGSI-LD Information Model prescribes the structure of context information that shall be

supported by an NGSI-LD system. It specifies the data representation mechanisms that shall be

used by the NGSI-LD API itself. In addition, it specifies the structure of the Context

Information Management vocabularies to be used in conjunction with the API.

The NGSI-LD information model is framed within an ontology and adopts JSON-LD for

context information. JSON-LD is a Linked Open Data serialization using the popular JSON

(Javascript Object Notation) format that is convenient for back-end and browser-based

development, defined by W3C as an official serialization.

For NGSI-LD, JSON-LD, which is an extension of JSON devised to support linked data, fits

better as the encoding format to collect the relationships and the context describing the entities

graph.

As already mentioned before, JSON-LD is a lightweight linked data format, easy for humans

to read and write, providing a way for JSON data to interoperate. Linked Data empowers people

that publish and use information in the web, creating a network of standards-based, machine

readable data across websites. It allows an application to start at one piece of Linked Data and

follow embedded links to other pieces of Linked Data that are hosted on different sites across

the web.

Although NGSI-LD uses ontologies similar to NGSI-v2, this format also includes annotations

that improve the semantic capabilities of the information encoded at the entities. The most

useful annotation is @context (which will be thoroughly explained in section Fehler!

Verweisquelle konnte nicht gefunden werden.), which stores the context namespace (set of

signs/names that are used to identify and refer to objects of various kinds, ensuring that all of a

given set of objects have unique names so they can be easily identified). Moreover, annotations

have to be used also to stipulate the role of the nested attributes supporting essential data

descriptions, @type and @value, when their depth overcomes the first level.

The NGSI-LD specification defines an abbreviated representation of Entities, which allows

consuming only entity data (the target object of each Relationship or the value of each Property)

corresponding to the Properties or Relationships whose subject is the Entity itself. The

simplified representation of Entities shall be supported by implementations and can be selected

by Context Consumers through specific request parameters.

The entity representation will be described in detail in the next sections, but first a simplified

entity representation will shown. It will include:

• A JSON-LD @context

• A JSON-LD object containing the following members:

◦ Id, type and @context

◦ For each Property a member whose key is the Property Name (a term) and whose

value is the Property Value.

◦ For each Relationship a term whose key is the Relationship Name (a term) and

whose value is the Relationship's Object (represented as a URI).

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 30 of 99

Figure 16 shows the basic structure for the representation of an NGSI-LD-formatted entity by

JSON-LD notation. This model also uses the entity type and a list of attributes storing the

properties, but the id is now the URI locating the element (“urn:ngsi-ld:example”), which

can be shortened by using the namespace tagged with the context annotation (@context).

Furthermore, other attributes define relationships with other context elements, by pointing to

their URIs, being tagged as Relationship type instead of Property.

To face the data requirements of the current project, the NGSI-LD API has been chosen because

of its capability to work with linked data, a critical aspect to achieve the goals of interoperability

that have been proposed.

This linking structure forms a directed, labeled graph, where the edges represent the named link

between two resources, represented by the graph nodes. This graph view is the easiest possible

meta model for RDF and is often used in easy-to-understand visual explanations.

Figure 17 shows an overview of the NGSI-LD information model structure. According to the

NGSI-LD schema, context information is structured at three levels, each one wrapping the level

placed below to increase its degree of specialization:

Figure 16: NGSI-LD basic representation

Figure 17: Overview of the NGSI-LD Information
Model Structure

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 31 of 99

1. Core meta-model is the lower level and describes the common structural features to be

fit by the entities created according to this standard. Examples include:

a. Entity URI

b. Entity Type

c. Generic properties

d. Relationships

e. Nested attributes

f. Context namespace

2. Cross domain model determines the specific schema for the time (Time Property:

observation date) and geographical location (GeoProperty: location).

3. Domain specific model implements the selected ontologies, or combinations of them

(specific or hybrid ontologies).

3.3.1.1 Core Meta Model

The core meta-model of NGSI-LD (figure 18) amounts to a formal specification of the

“property graph” model. It is the lower level and stipulates the common structure for the data

entities, defined by their properties and relationships with other entities. It defines the atomic

minimal information that can be published (entities, properties and relationships). The

possibility to nest properties is also defined at this level. 36

The Core Meta-Model is shown in figure 18, where it can be seen that:

• Each Entity is identified by a name and can have zero or more attributes

• The Properties define the status of the entity, which can be either static or dynamic

• The Relationships (unidirectional association with a Linked entity), define the topology

of the data model, by depicting a network of dependencies among the entities that

improve the context definition.

Thus, to model the context from the entities being used the values of the parameters arising

from the sensors at the physical layer have to be assigned, as well as their corresponding meta-

data, and establish the relationships linking them in their dedicated attributes. 37

The Entity Notes

Has an id URI/URN. The id must be unique.

Figure 18: NGSI-LD Core Meta-Model

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 32 of 99

Has a type

Fully qualified URI.

Short-hand strings for types, mapped to fully

qualified URIs through the JSON-LD @context

Has a series of properties Name, address, category, etc.

Has a series of properties-of-properties Verified field of address.

Has a series of relationships Object corresponds to another data entity

URI/URN.

Has a series of properties-of-relationships Holds additional information about relationship.

Has a series of relationship-of-relationships Hold the URI/URN of another relationship

The following implementations shall support the NGSI-LD meta-model as follows: 38

• An NGSI-LD Entity is a subclass of rdfs:Resource (RDFS is a semantic extension of

RDF and all things described by RDF are resources, and are instances of the class

rdfs:Resource. This is the class of everything and all other classes are subclasses of this

class. rdfs:Resource is an instance of rdfs:Class)
• An NGSI-LD Relationship is a subclass of rdfs:Resource.
• An NGSI-LD Property is a subclass of rdfs:Resource.
• An NGSI-LD Value shall be either a rdfs:Literal (literal values such as strings and

integers) or a node object (in JSON-LD language) to represent complex data structures.
• An NGSI-LD Property shall have a value, stated through hasValue, which is of type

rdfs:Property (rdfs:Property is the class of RDF properties, being an instance of

rdfs:Class).
• An NGSI-LD Relationship shall have an object stated through hasObject which is of

type rdf:Property.

RDFS (RDF Schema) provides a data-modelling vocabulary for RDF data. It is a semantic

extension of RDF, providing mechanisms for describing groups of related resources and the

relationships between them. RDFS is written in RDF and its resources are used to determine

characteristics of other resources, such as the domains and ranges of properties.

The NGSI-LD meta model allows the advantages of RDF and Linked Data standards on top of

the expressive Property Graphs (which are de facto industry standards from their use in graph

databases), by providing reification (statement about statements). This allows:

• Export/import from/to [Property graph]/[RDF graph]
• Can be easily expressed in JSON-LD
• Model is suitable for SPARQL queries

3.3.1.2 Cross-domain ontology

The NGSI-LD Cross-Domain Ontology (figure below) is a set of generic, transversal classes

which are aimed at avoiding conflicting or redundant definitions of the same classes in each of

the domain-specific ontologies.

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 33 of 99

Frequent examples are the geo-properties, such as coordinates where the sensor is located, and

the time related properties, such as observation date when the value of the magnitude was

measured.

The NGSI-LD cross domain ontology introduces the following concepts, with their

implementations:

• Geo Properties: Are intended to convey geospatial information and implementations.
• Temporal Properties: They are non-reified Properties (represented only by its Value)

that convey temporal information for capturing the time series evolution of other

Properties.
• "unitCode" Property: A Property intended to provide the units of measurement of an

NGSI-LD Value.
• Geometry Values: They are a special type of NGSI-LD Value intended to convey

geometries corresponding to geospatial properties.
• Time Values: They are a special type of NGSI-LD Value intended to convey time

instants or intervals representations.

The Cross-Domain core properties that give context to the information include the following:

• location → Geospatial location encoded as GeoJSON.
• observeAt → Observation timestamp.
• createdAt → Creation timestamp (entity, attribute).

• modifiedAt → Update timestamp.

• unitCode → units of measurement.

3.3.1.3 Domain Specific ontology

Below the Core Meta-Model and the Cross-Domain Ontology, the Domain Specific ontologies

of vocabularies are devised, in Platoon this task is carried out in T2.3 “Data models”.

At this level, the specific model is defined with the properties that are needed for the particular

use case covered by the solution implementing the API. To implement this level, it is necessary

the use of domain specific ontologies or, usually, combinations of several ontologies. The goal

of the data model is to describe a given part of the real world, to encode the information

extracted in this way and to share it with the components responsible for their management and

analysis.

Figure 19: NGSI-LD Cross-Domain Information Model

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 34 of 99

An ontology can represent a certain phenomenon, topic, or subject area through the description

of classes, properties and instances (also known as individuals). Classes are abstract groups,

sets, or collections of individuals and represent ontology concepts. Furthermore, these classes

can have a hierarchical relation and can be arranged in taxonomies of superclasses and

subclasses. Properties represent features or characteristics of individuals as well as the

relationship between them. Finally, instances represent individuals of the classes described in

the ontology.

Ontologies can be constructed based on different ontology languages such as the Web Ontology

Language (OWL). OWL itself is based on RDF and RDFS, thus the vocabulary used for

defining ontologies is a combination of concepts defined in RDF, RDFS and OWL. Certainly,

an ontology language provides the expressive capability to encode knowledge about a specific

domain and is often complemented with inference rules or validation rules that support the

processing of such knowledge.

Once the purpose and the level of detail of the ontology are clear, it is necessary to define the

concepts, properties and relationships that suit this purpose. Instead of creating an ontology

from scratch, it is a best practice to reuse existing ontologies when possible.

For entities (real world devices, databases, or other information sources) they can be created by

extending the Cross Domain Ontologies and the Core Meta Model, with specialized terms

drawn from other ontologies.

From the PLATOON use cases, the ontologies to be reused or extended are SAREF, SEAS,

Ontowind, CIM, S4BLD, skos, foaf, dcat, vcard, dcterm, brick, xsd, semanco, S4CITY, th,

dogont, pep, sch, ifc, bot, bonsai, ssn, sosa, fiemster, S4ENER, time, schema, oema and icc.

Specific PLATOON domain ontologies have been created. Some examples are shown below,

for the whole catalog please refer to the deliverable D2.3 “Data models”.

• HVACOntology defines the HVAC vocabulary for PLATOON, importing

seas:SystemOntology and saref ontology

◦ IRI → https://w3id.org/platoon/HVACOntology

• ElectricPowerSystemOntology defines electric power system concepts.

Plt:ElectricPowerSystemOntology imports seas:ElectricPowerSystemOntology and

seas:StreetLightSystemOntology, extending seas:ElectricPowerSystemOntology

◦ IRI → https://w3id.org/platoon/ElectricPowerSystemOntology

3.3.2 A guide to Context

Context can be summarized to be nothing but a list of key-values, as shown in figure 20. 39

Figure 20: Context notion simplified

https://w3id.org/platoon/HVACOntology

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 35 of 99

The key (e.g. “P1”) is an alias for the longer name (“https://a.b.c/attributes/P1”). This

alias provides a way to write really long strings as well as giving the user the freedom to define

their own aliases.

3.3.2.1 Expansion and Compaction

An NGSI-LD broker and the other components that will use the API use the context to expand

and compact the shortnames that are part of the payload data or that come in as a URI parameter.

Inside the payload data, the context helps expand/compact:

• The Entity Type

• The Property Names (in all levels)

• The Relationship Names (in all levels)

The term Attribute is used to refer to Properties, Relationships, Properties-of-Properties, etc.

So, for example, if the GET ngsi-ldv1/entities?type=T2 is issued, then T2 will be expanded

to the current context and then looked up to find any matching entities. All entities are stored

in a fully expanded form, which is the real value of the entity type, attribute name, value, etc.

Before returning the resulting payload, all expandable/compactable items are compacted

according to the context as follows:

• T2 is expanded (to "https://uri.etsi.org/ngsi-ld/default-context/T2", for

example)

• All entities with that type are retrieved from storage

• All those entities are compacted (attribute names, entity type ...) =>

"https://uri.etsi.org/ngsi-ld/default-context/T2" goes back to being "T2"

• The response is composed from the compacted entities

3.3.2.2 The Core Context

Components that use the API have a default context built in, the Core Context. The Core

Context defines the core of any NGSI-LD broker and its definitions (key-values) override any

user-supplied definition. So, when a term is looked up for expansion or compaction in the

context, the entire context is searched to the end, and the last hit overrides any previous hit.

Therefore, the Core Context is the last context to be searched.

The core context (https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-

v1.3.jsonld) is fundamental to NGSI-LD and it is added by default to any context sent to a

request. @context defines elements such as id and type and terms such as Property and

Relationship.

https://a.b.c/attributes/P1
https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.3.jsonld
https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.3.jsonld

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 36 of 99

3.3.2.3 The default URL

During lookup in the context, all entity types and attribute names are expanded and if no match

is found in the provided contest, then a special field “@vocab” of the Core Context is used.

This is known as the default URL.

"@vocab": "https://uri.etsi.org/ngsi-ld/default-context/"

For example, if an attribute has the name “P7” and it is not found anywhere, then it will end up

expanded according to the default URL, as follows:

"https://uri.etsi.org/ngsi-ld/default-context/P7"

3.3.2.4 Content-type and Context

There are two different ways to supply the context in a NGSI-LD request:

• via a HTTP header called Link

• as part of the payload

In the context is passed in the Link HTTP header, then the Context-Type must be

application/json, whereas if it is passed in the payload data, then the Context-Type must be

application/ld+json.

3.3.2.5 Compound context

Contexts inside the payload data can be expressed in many ways:

• A JSON String (a URL that refers to the context)

• "@context": "url-to-context"`

• A JSON Object that is the context, i.e. a list of key-values

• A JSON Array of string (URLs referring to the context)

https://uri.etsi.org/ngsi-ld/default-context/

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 37 of 99

• A JSON Array of a combination of strings and objects

3.3.2.6 Value Expansion

The value of a key-value in a context can be a little more complex than just a string. This is

shown below:

If an alias has a complex value in the @context, and that complex value contains a member

@type that equals @vocab, then also the value of that attribute (an attribute is a Property or

Relationship) is expanded according to the context. However, this only happens if it is found

inside that very same context, otherwise the value is untouched.

JSON-LD allows two applications to use shortcut terms to communicate with one another more

efficiently without losing accuracy. Context is used to map terms to URIs.

Figure 21 shows that a context is introduced using an entry with the key @context and may

appear within a node or value object.

Figure 21: JSON-LD context

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 38 of 99

A context is introduced using the key @context. Each Data Model shall have a JSON-LD

@context, providing an unambiguous definition by mapping terms to URIs. For practicality

reasons, it is recommended to have a unique @context resource, containing all terms, subject

to be used in every Platoon Data Model, the same way as http://schema.org does.

Contexts can either be directly embedded into the document or be referenced using a URL. If

context from figure 21 can be retrieved, it can be referenced by adding and single line and allow

a JSON-LD document to be expressed much more concisely as shown in figure 22.

This allows developers to re-use each other´s data without having to agree to how their data

will interoperate. External JSON-LD context documents may contain extra information located

outside the @context key, which is ignored when the document is used as an external JSON-

LD context document.

A remote context can also be referenced using a relative URL, as shown in figure 23.

3.3.3 Basic operations

The NGSI-LD API supports a number of operations, with messages expressed using JSON-LD.

It allows context consumers and context producers to interact with context information systems.

Not all conceivable operations are supported in the API, but rather a subset which is as simple

as possible, yet complex enough to handle the vast majority of interactions.

These API operations allow applications to discover, query and explore the graph-based data

by specifying any combination of entities, types, relationships and/or properties as criteria for

data queries.

Context consumers can retrieve context information from the Context Broker and components

using this API both, in a synchronous and asynchronous way.

Synchronous interactions are carried out by means of queries, which have to be launched

directly by the consumer and supplies data describing the current state of the context, or some

specific parameters, at the time when it has been required.

Moreover, asynchronous interactions are not answers to queries from the context consumers

but occur as a response to events, mainly changes in the state of the context. This service

Figure 22: Example referencing a JSON-LD context

Figure 23: Example loading a relative context

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 39 of 99

requires a previous subscription of the context consumer, which will be updated with every

change in the values of context parameters by sending notifications from the context Broker

when they take place.

Thus, queries enable to get information of the context when the consumer need it, whereas

subscriptions ease to be warned about changes reported by the context makers at any time.

The operations listed here are used to set a given data source as context producer, as well as to

find context producers which have been already registered to link them to other entities.

3.3.3.1 CRUD operations view

The CRUD operations view will provide a general view of the NGSI-LD operations with the

typical operations related to the storage and retrieval of information within a database.

CRUD Operations (Create, Read, Update and Delete) are the four basic functions of persistent

storage. For a smart system based on NGSI-LD, CRUD actions allow the developer to

manipulate the context data within the system. Every CRUD operation is clearly defined within

the NGSI-LD specification, so all NGSI-LD compliant architecture components offer the same

interface with the same NGSI-LD operations.

There are four endpoints used for CRUD operations on an individual data entity. These follow

the usual rules for hierarchical entities within RESTful applications.

When requesting data or modifying individual entities, the various CRUD operations map

naturally to HTTP verbs.

• GET - for reading data

• POST - for creating new entities and attributes

• PATCH - for amending entities and attributes

• DELETE - for deleting entities and attributes

One group of NGSI-LD operations allow Context Producers to create NGSI-LD entities (insert

an object with a defined URI into the systems) and allow Context Consumers to retrieve and

subscribe to entities.

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 40 of 99

Figure 24 shows the data transfer-related operations from NGSI-LD REST API. In the upper

part of the chart, a context maker creates a new data entity, by means of a context data supply

operation, and a context consumer establishes a subscription with a context data subscription

operation.

In the middle part, a context consumer is automatically notified about an update event taking

place at the entity it is subscribed to, whereas unsubscribed consumers will not recover the

updated information until they send the corresponding query since the communication in this

case is synchronous. Events leading to the removal of entities are also notified by asynchronous

communications to the subscribed consumers.

3.3.3.2 Context Information Provision and Consumption

Context Information Provision and Consumption refer to the operations where context

producers can create, update and delete an NGSI-LD entity.

Figure 24: NGSI-LD API operation overview

Figure 25: NGSI-LD API Context Information

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 41 of 99

Figure 25 shows the Swagger representation of the information provision and consumption

operations.

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 42 of 99

Action Operation

Create Entity POST /ngsi-ld/v1/entities

Delete Entity DELETE /ngsi-ld/v1/entities/{entityId}

Append new

attributes to

Entity

POST /ngsi-ld/v1/entities/{entityId}/attrs/

If attribute already exists it is overwritten

Update Entity

Attributes

PATCH /ngsi-ld/v1/entities/{entityId}/attrs/

Error if attribute does not exist

Delete Entity

Attribute

DELETE /ngsi-ld/v1/entities/{entityId}/attrs/{attributeName}

Error if attribute does not exist

Retrieve Entity

by id

GET /ngsi-ld/v1/entities/{entityId}?attrs=<attrList>

Returns a Json object representing the concerned Entity.

If attrs not present, then all Entity Attributes will be retrieved.

Query Entities GET /ngsi-ld/v1/entities/?

 type<typeList>

 &id=<idList>

 &idPattern=<RegExp>

 &q=<Expression>

 &attrs=<attrList>

Returns Entity list as a JSON Array, where pagination is available

Geo-query GET /ngsi-ld/v1/entities/?

 &georel

Geo-relationship (near, contains, intersects, overlaps, coveredBy, disjoint

etc.)

 &geometry

GeoJSON reference geometry (point, polygon, line, box, etc.)

 &coordinates

Array of GeoJSON coordinates encoded as string

Table 1: Context Information Provision Operations

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 43 of 99

Any newly created entity must have id and type attributes and a valid @context definition. All

other attributes are optional and will depend on the system. Though, if additional attributes are

present, each should specify both a type and a value.

The response will be 201 – Created or 409 – Conflict (if the entity were already to exist in the

context)

The following example adds a new TemperatureSensor entity to the context by making a

POST request to the /ngsi-ld/v1/entities endpoint. 40

The next example adds a new batteryLevel Property and a controlledAsset Relationship

to the existing TemperatureSensor entity with id=urn:ngsi-ld:TemperatureSensor:001. By

making a POST request to the /ngsi-ld/v1/entities/{entityId}/attrs/ endpoint.

The payload should consist of a JSON object holding the attribute names and values as shown.

All type=Property attributes must have a value associated with them and all type=Relationship

attributes must have an object which holds the URN of another entity. Well-defined common

metadata elements such as unitCode can be provided as strings, while all other metadata should

be passed as JSON object with its on type and value attributes.

Subsequent requests using the same id will update the attribute value.

The consumption operations allow a Context Consumer to retrieve or query for NGSI-LD

entities, being able to filter out Entities by Attribute Value (target value of a property or the

target value of a Relationship).

For read operations the @context must be supplied in a Link header.

Figure 26: Entity creation example

Figure 27: Attribute creation example

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 44 of 99

The following example reads the full context from an existing TemperatureSensor entity with

a known id. The TemperatureSensor URN is returned as normalized JSON-LD with additional

metadata. By default the @context is returned in the payload body.

curl --location --request

 GET 'http://localhost:1026/ngsi-ld/v1/entities/urn:ngsi-

ld:TemperatureSensor:001?options=sysAttrs' \

--header '

 Link: <http://context-provider:3000/data-models/ngsi-

context.jsonld>; rel="http://www.w3.org/ns/json-ld#context";

type="application/ld+json"'

The next example reads the value of a single attribute (temperature) from an existing

TemperatureSensor entity with a known id. Here it is shown that the sensor urn:ngsi-

ld:TemperatureSensor:001 is reading at 25ºC.

curl --location --request

 GET 'http://localhost:1026/ngsi-ld/v1/entities/urn:ngsi-

ld:TemperatureSensor:001?attrs=temperature' \

--header

 'Link: <http://context-provider:3000/data-models/ngsi-

context.jsonld>; rel="http://www.w3.org/ns/json-ld#context";

type="application/ld+json"'

The next example reads the key-value pairs from the context of an existing

TemperatureSensor entities with a known id. The response contains an unfiltered list of

context data from an entity containing all the attributes. Since the Accept: application/json was

set, the payload body does not contain any context.

curl --location --request GET 'http://localhost:1026/ngsi-

ld/v1/entities/urn:ngsi-ld:TemperatureSensor:001/?options=keyValues'

\

--header 'Link: <http://context-provider:3000/data-models/json-

context.jsonld>; rel="http://www.w3.org/ns/json-ld#context";

type="application/ld+json"' \

--header 'Accept: application/json'

3.3.3.3 Context Subscriptions

Context Subscription refer to the operations through which regular or event-driven update

notifications of the context of one or more Entities can be created, updated, retrieved and/or

queried for.

Subscriptions can be on a particular Entity id/ set of Entities, on an Entity Type/set of

EntityTypes and/or a particular set of watched attributes.

Notifications are delivered via HTTP POST requests, as a JSON Array of affected Entities as

per the notification details described by the subscription.

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 45 of 99

Figure 28 shows the Swagger for the NGSI-LD context subscription, and the table below shows

the corresponding actions to the CRUD operations.

Action Operation

Create subscription POST /ngsi-ld/v1/subscriptions

Update subscription PATCH /ngsi-ld/v1/subscriptions/{subscriptionId}

Remove subscription DELETE /ngsi-ld/v1/subscriptions/{subscriptionId}

List subscriptions GET /ngsi-ld/v1/subscriptions/

Retrieve subscriptions by id GET /ngsi-ld/v1/subscriptions/{subscriptionId}

Table 2: Context Subscription Operations

3.3.3.4 Context Source Registration

Operations to register new context makers as well as to delete existing records of context

makers in a synchronous manner. When registered, the entities linked to the context maker have

to be stipulated, by direct assignment or by filtering by some criteria. Relationships with the

context entities may also be updated with operations belonging to this group.

Figure 29 shows the Context Subscription swagger for the NGSI-LD API.

Figure 28: NGSI-LD Context Subscriptions

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 46 of 99

Table 3, shows the corresponding actions to the CRUD operations for Context Source

Registration.

Action Operation

Create Context

Source Registration

POST /ngsi-ld/v1/registrations

Update Context

Source Registration

PATCH /ngsi-ld/v1/registrations/{registrationId}

Remove Context

Source Registration

DELETE /ngsi-ld/v1/registrations/{registrationId}

Query Context

Source Registration

GET /ngsi-ld/v1/registrations/?<Same as Query Entities>

Retrieve Context

Source Registration

GET /ngsi-ld/v1/registrations/{registrationId}

Table 3: Context Source Registration Operations

3.3.3.5 Context Entity Batch Operations

Batch operations allow users to modify multiple data entities with a single request. All batch

operations are mapped to the POST HTTP verb.

Figure 29: NGSI-LD Context Source Registration

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 47 of 99

For example, the batch processing endpoint can be used to add three new TemperatureSensor

entities to the context, using the /ngsi-ld/v1/entityOperations/create endpoint.

The request will fail if any of the attributes already exist in the context. The response highlights

which actions have been successful and the reason for failure (if any has occurred).

The next example adds or amends two TemperatureSensor entities in the context.

• If an entity already exists, the request will update that entity´s attributes.

• If an entity does not exist, a new entity is created.

A subsequent request containing the same data will also succeed.

Figure 31: Batch create Entity/Attribute example

Figure 30: NGSI-LD Batch operations

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 48 of 99

3.3.3.6 Query Pagination

NGSI-LD Query operations can potentially return a result set including a large number of

NGSI-LD Elements by dividing and obtaining the information in different blocks/queries, so

that pagination of query results shall be supported by compliant implementations. Nonetheless,

the NGSI-LD API is agnostic about specific pagination mechanisms and only defines the

behaviour that shall be observed by NGSI-LD Systems.

There are four parameters to be taken into account:

1. limit: Number of elements per page (20 by default, maximum 1000)

2. offset: number of elements to jump (from the beginning)

3. count (optional): only returns the total number of elements of the petition

4. orderBy (optional): attributes that can be ordered (creation date by default)

An example would be: GET /ngsi-ld/v1/entities?limit=20offset=0&orderBy=temp

3.3.3.7 Temporal evolution

The temporal representation (e.g. its historical evolution), is composed of the sequence of

instances during a period of time.

Figure 32: Batch Create/Overwrite new entities example

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 49 of 99

The following example shows a query to retrieve all the operation history of Entities of type

Lightbulb that are not outside between the 1st of August at noon the 1st of August at 01 PM.

 GET /ngsild/temporal/entities/?type=Lighbulb&q=location!

 =Outside&attrs=operation,location&timerel=between&ti me=2018-08-

 01:12:00:00Z&endTime=2018-08-01:13:00:00Z&options=temporalValues

 Accept: application/ld+json

An example of a simplified HTTP response would be:

 200 OK
 Content-Type: application/ld+json
 [
 { "id": "urn:ngsi-ld:Lighbulb:B9211",
 "type": "Lightbulb",
 "location": {
 "type": "Property",
 "values": [["livingRoom",""]
]
 },
 "operation": {
 "type": "Property",
 "values": [
 [4,"2018-08-01T12:03:00Z"],
 [70,"2018-08-01T12:05:00Z"],
 [100,"2018-08-01T12:07:00Z"]
]
 },
 "@context": [
 "http://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-
 context.jsonld",
 "http://example.org/ngsi-ld/lightbulb.jsonld"
]
 }
]

Figure 33: NGSI-LD temporal representation operations

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 50 of 99

4 Marketplace: TMForum APIs

The PLATOON marketplace is a component that is still in the design/development phase and

it is planned that it will provide functionalities to publish, search and browse for different assets:

data and data analytics tools. Asset offerings can be organised into groups/categories in a

hierarchical fashion to allow for an easy navigation and discovery of them. Metadata define

characteristics and properties of assets (metadata could include also way to exchange / access

datasets) They may also be inherited from a higher level in a category hierarchy. The module

lets the asset providers be able to define the technical description of the assets they own.

The marketplace APIs provide sellers the means for managing, publishing and generating

revenue from the products, apps, data and services across the whole life cycle. Standard APIs

(and its reference implementations) provided by the TM Forum API ecosystem will be

specified. 41 42 43

TMForum ecosystem OpenAPIs (figure 34 and 35) are REST based APIs that enable rapid,

repeatable and flexible integration among operations and management systems.

4.1 Product Catalog Management API

Product Catalog Management API provides a catalog of products, allowing the management of

the entire lifecycle of the elements, consultation, etc.

The product catalog management API uses the following fields:

• id - Unique identifier of the catalog
• href - URL pointing to the catalog info
• version - Version of the catalog
• lastUpdate - Date and time of the last update
• category - List of categories of the catalog. For each category the id, href, and name

fields are included as described in Category Management section

Figure 35: TMForum ecosystem APIs

Figure 34: TM Forum API end-to-end

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 51 of 99

• name - Name of the catalog
• lifecycleStatus - Current lifecycle status
• relatedParty - List of parties and its roles related to the current catalog. For each party,

it is included the id and the href as described in the Party Management section.

Additionally, it includes a role field specifying the role of the user in the current catalog

Product Catalog API performs the following operations on the resources (figures 36 - 38 show

the Swagger specification):

• Retrieve an entity or a collection of entities depending on filter criteria

• Partial update of an entity (including updating rules)

• Create an entity (including default values and creation rules)

• Delete an entity

• Manage notification of events

Figure 36: Product Catalog Management API Swagger operations I

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 52 of 99

The following example shows a request for creating a specific catalog (figure 39).

Figure 37: Product Catalog Management API Swagger operations II

Figure 38: Product Catalog Management API Swagger operations III

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 53 of 99

4.2 Order Management API

The Order Management API provides a standardized mechanism for placing a product order

with all the necessary order parameters, dealing with the management of Product Orders made

by customers. These include a set of order items each specifying an offering to be acquired.

When creating an order, customers can select the value of the different configurable

characteristics as well as the concrete pricing to be applied.

The fields managed by the API are as follows:

• id - Unique identifier of the order
• href - URL pointing to the product order info
• externalId - Id of the order given by customer, which can be used by them to identify

the order in their own systems
• priority - Number between 1 and 4 (1 being the highest) that can be used by the customer

to specify the priority of their orders
• description - Description of the product order
• state - Status of the order, relative to the status of the different order items
• orderDate - Date when the order was created
• completionDate - Date when the order was completed
• requestedStartDate - Order start date wished by the requestor
• requestedCompletionDate - Requested delivery date from the requestor perspective
• expectedCompletionDate - Expected delivery date amended by the provider
• notificationContact - Contact attached to the order to send back information regarding

the current order

Figure 39: Specific catalog creation example

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 54 of 99

• note - List of extra information about the order. For each note is included the following

info:
◦ date - Date of the note
◦ author - Author of the note
◦ text - Text of the note

• relatedParty - Defines parties which are involved in the order and the role they are

playing. For each party, it includes the id and the href as described in the Party

Management section. Additionally, it includes a role field specifying the role of the user

in the current product order
• orderItem - List of order items that have to be treated. For each order item the following

information is managed:
◦ id - Id of the order item relative to the product order (Only need to be unique within

the order)
◦ action - Type of the order item. Currently only add is supported (acquisition)
◦ state - Status of the order item
◦ billingAccount - Billing account selected by the customer to acquire the offering

according to the Billing Management API section
◦ productOffering - Product offering being acquired. It includes the id and the href of

the product offering
◦ product - Information provided to create the inventory product. It contains the

selected characteristics and the selected pricing. The different fields managed by

this object are the same as the described in the Inventory Management API Section

The Order API performs the following operations on product order (figure 40):

• Retrieval of a product order or a collection of product orders depending on filter criteria
• Partial update of a product order (including updating rules)
• Creation of a product order (including default values and creation rules)
• Deletion of product order (for administration purposes)
• Notification of events on product order.

Figure 40: Product Order API Swagger ProductOrder operations

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 55 of 99

The cancelProductOrder resource is used to request a product order cancellation, performing

the following operations (figure 41):

• Retrieval of a cancel product order or a collection of cancel product orders
• Creation of a cancel product order
• Notification of events on cancel product order.

Figure 42 shows an example of a request for retrieving ResourceOrder resources. It searches

resource orders started on January 1st 2015 and the result items are shrunk to show only the ids

(fields=id).

Figure 43 shows an example of a request for deleting a Service order.

Figure 42: Resource order retrieval example

Figure 41: Product Order API Swagger cancelProductOrder operations

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 56 of 99

4.3 Party Management API

Party is an abstract concept that represents an individual (person) or an organization that has

any kind of relation with the enterprise. It is created to record an individual/organization before

the assignment of any role.

• For the different individuals of the system, the following information is used:

• id - Id of the party. Corresponds with the username of the user in the system

• href - URL pointing to the party info

• gender - Gender of the individual owner of the account

• placeOfBirth - Place where the owner of the account was born

• countryOfBirth - Country where the owner of the account was born

• nationality - Nationality of the owner of the account

• maritalStatus - Marital status (married, divorced, widow, etc)

• birthDate - Date when the owner of the account was born

• title - Preferred title of the user (Mr., Dr., etc)

• givenName - First name of the user owner of the account

• familyName - Family name of the user owner of the account

• contactMedium - List of mediums that can be used to contact the user. Note that this

information is public to all the users of the system, so this mediums are used as seller

contact. Each medium contains the following fields:

◦ type - Type of the contact medium. It could be Email, TelephoneNumber, or

PostalAddress

◦ preferred - If true, indicates that is the preferred contact medium

◦ emailAddress - Full email address in standard format. This field is only used when

the type is Email

◦ number - Phone number. This field is only used when the type is TelephoneNumber

◦ street1 - Describes the street. This field is only used when the type is PostalAddress

◦ street2 - Complementary street description. This field is only used when the type is

PostalAddress

◦ city - City of the medium. This field is only used when the type is PostalAddress

Figure 43: Deleting service order example

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 57 of 99

◦ postCode - PostCode of the medium. This field is only used when the type is

PostalAddress

◦ stateOrProvince - State or province of the medium. This field is only used when the

type is PostalAddress

◦ country - Country of the medium. This field is only used when the type is

PostalAddress

An individual represents a single human being while an organization refers to a group of people

identified by shared interests/purpose.

The resources provided by the API are the following:

• Organization

• Individual

• Hub

Party Management API performs the following operations (figure 44):

• Retrieve an organization or an individual

• Retrieve a collection of organizations or individuals according given criteria

• Create a new organization or a new individual

• Update an existing organization or an existing individual

• Delete an existing organization or an existing individual

• Notify events on organization or individual

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 58 of 99

The following example shows a request for retrieving individual resources.

Figure 44: Party Management API Swagger operation

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 59 of 99

An individual resource can be created as shown in figure 46.

Figure 47 shows how partial updates can be done on an organization. The attribute is changed

using the json-patch.

Figure 45: Individual resource retrieval example

Figure 46: Individual resource creation example

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 60 of 99

An organization entity can be deleted as shown in figure 48.

4.4 Usage Management API

The Usage Management API provides a standardized mechanism for usage document

management. A usage is an occurrence of employing a Product, Service or Resource for its

intended purpose which is of interest to the business and can have charges applied to it.

Usage documents contain the actual usage made of an acquired product, including the

information defined in its Usage Specification. This API manages both rated and non-rate

usages.

This API manages the following fields:

• id - Id that identifies the Usage

• href - URL pointing to the Usage

• date - Date and time when the usage was created

• type - Type of the Usage document. It refers to the name of a Usage Specification

• description - Description of the Usage Document

• status - Current status of the Usage

• usageSpecification - Reference to the Usage Specification that defines the current usage.

It includes its id and its href

Figure 48: Organization entity deletion example

Figure 47: Organization resource partial update example

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 61 of 99

• usageCharacteristic - List with the values of the characteristics defined in the Usage

Specification

• relatedParty - List of parties that are involved in the Usage. At least this list must include

the user the made the usage of the service with the role customer

• ratedProductUsage - In case the customer had already been charged for the usage made

in the current document, this field would contain the amount generated by the document,

taking into account the pricing model of the product. This field contains the following

fields:

◦ ratingDate - Date and time when the document was rated

◦ usageRatingTag - Fixed to usage

◦ isBilled - Specifies if the rated document has been already charged

◦ ratingAmountType - Fixed to Total

◦ taxIncludedRatingAmount - Total amount generated by the Usage

◦ taxExcludedRatingAmount - Amount without taxes generated by the Usage

◦ taxRate - Tax rate of the rated amount

◦ currencyCode - Currency of the rated amount

◦ productRef - href of the product in the inventory that generated the rate

For a usage document to be processed and understood by the system, some fields are required

defined as characteristics of Usage Specification. These are:

• orderid - Id of the order where the product was acquired

• productid - Id in the inventory of the product containing the details of the acquisition

• correlationNumber - Sequence number of the usage documents, used to ensure that no

usage has been lost

• unit - Unit being monitored while accounting the service (e.g second, call, megabyte,

etc)

• value - Usage made of the service of the given unit

The resources managed by Usage Management API are as follows:

• usage
• usageSpecification

The operations supported by the Usage Management API are specified using the Swagger tool

and shown in figure 49.

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 62 of 99

The following example shows how Usage details for the usageType of ‘Voice’ can be

retrieved.

Figure 49: Usage Management Api Swagger operations

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 63 of 99

4.5 Communication API

The Communication API provides a capability to create and send communications,

notifications and instructions to Parties, Individuals, Organizations or Users.

It provides a standardized mechanism for Communication management such as creation,

update, retrieval, deletion and notification of the system communication events. The following

data resources are managed:

• Communication message: notification approach in the format of a message which can

be dispatched to certain users by the system with the content which can be felt and

understood by the recipient. The user can be either a final customer of a customer service

agent and it can be done through different interaction channels such as email, short

message or mobile app notification.

Communication API performs the following operation on the resource of “Communication

Message”. There are two types of operations provided in this API. One is the management of

the request message body. Another is for sending the communication message to the customer.

Operations for Communication Message body management

• Retrieval of an existing Communication Message depending on filter criteria

• Creation of a new Communication Message

• Partial update of an existing Communication Message

• Deletion of an existing Communication Message

• Notification of events:

Figure 50: Usage retrieval example

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 64 of 99

◦ Creation of Communication Message

◦ Updating Communication Message

◦ Deletion of Communication Message

◦ Operations for sending Communication Message.

• Send a message, including:

◦ Send a new message with the whole communication message body (POST

operation)

◦ Send a message with the predefined communication message body (POST

operation)

The Communication Message is used to express the message itself. Once the communication

message exists, this API can be used to send it from the sender to the receiver through POST
/communicationMessage/send

To send a pre-defined Communication message from the sender to the receiver the following

command is used: POST /communicationMessage/{ID}/send

Figure 52 shows an example of a query to retrieve a pre-defined message.

Figure 52: Pre-defined message query example

Figure 51: Communication API Swagger operations

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 65 of 99

4.6 Customer Management API

The Customer Management API deals with customer information. It is used for saving customer

private information that cannot be included within the party resources.

A customer can be a person, an organization that buys products and services or receives free

offers or services from another service provider. The Customer Management API allows

management of identification and financial information.

This API manages de following fields:

• id - Id that identifies the customer object

• href - URL pointing to the customer info

• name - Username of the owner of the customer object. Note that this field maps the id

field of the individual object

• relatedParty - Party which owns the Customer object

• contactMedium - List of contact mediums that define a shipping contact. This list has

the same format as the contact medium described in the Party Management API, and

must include an email, a telephone, and an address. In this case, this address is private

and only vissible by sellers when they need it

• customerAccount - Reference of the customer account attached to this customer object

This API assumes that the information regarding customer accounts and payment means is

obtained by accessing the Account Management API, while the information regarding related

parties is obtained by accessing the Party Management API.

The following example shows a request for creating a Customer resource.

Figure 53: Customer Management API Swagger operations

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 66 of 99

4.7 Customer Bill Management API

The Customer Bill Management API allows to find and retrieve one or several customer bills

(invoices) produced for a customer. A customer bill is an electronic or paper document

produced at the end of the billing process. The customer bill gathers and displays different items

(applied customer billing rates generated during the rating and billing processes) to be charged

to a customer. It represents a total amount due for all the products during the billing period and

all significant information such as dates, bill reference, etc.

This API also provides operations to find and retrieve the details of applied customer billing

rates presented on a customer bill.

Finally, this API allows to request in real-time a customer bill creation and to manage this

request.

The resources for this API include:

• Customer bill resource
• The billing account receives all charges (recurring, one time and usage) and periodically

a customer bill /invoice is produced, concerning different related parties. A payment

method could be assigned to the customer bill to build the call of payment, with a tax

item created for each tax rate. The customer bill is linked to one or more documents that

can be downloaded via a provided URL.
• Applied customer billing rate resources
• A customer bill displays applied billing rates created before or during the billing

process.

Figure 54: Customer resource creation example

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 67 of 99

• Customer bill on demand resource manages the creation request of a customer ill in real-

time

Customer Bill Management API performs the following operations (figure 55):

• Retrieve a customer bill or a collection of customer bills depending on filter criteria.
• Partial update of a customer bill (for administration purposes).
• Retrieve an applied customer billing rate or a collection of applied customer billing rates

depending on filter criteria.
• Create a customer bill on demand request
• Retrieve one or a collection of customer bills on demand request(s) depending on filter

criteria.
• Manage notification of events on customer bill and customer bill on demand.

Figure 56 shows an example of a request for retrieving a single BillCycle.

Figure 55: Customer Billing Management API Swagger operations

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 68 of 99

Figure 56: Single BillCycle retrieval example

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 69 of 99

5 Analytics toolbox APIs

The PLATOON Data Analytics toolbox will be formed of all the data analytics tools that will

be developed and used in the project by the different partners for the different use cases. These

tools will allow the extraction of value from heterogenous data sources. There will be two main

groups of data analytics tools:

1. Energy specific tools for which have been specifically developed for the different

applications or services (benchmarking, predictive maintenance, operation

optimisation, etc.) and for the different domains of the energy value chain as per the

different use cases defined in deliverable D1.1 “Challenges/ Business case definition”

(i.e., RES generation, smart grids and End Use of Energy).

2. Generic tools that complement the energy specific tools and that are applicable to

different applications and domains (e.g. data pre-processing tools, visualisation tools,

graph processing tools, etc.).

The PLATOON Data Analytics Toolbox must meet the following principles: Interoperability,

Usability, Efficiency (Flexibility) and Reusability (transferability).

In order to meet the interoperability principle, the toolbox must be integrated with the

PLATOON reference architecture and common data models and APIs must be defined.

Regardless of the implementation type (as an external microservice or in the customer

infrastructure) the communication between data analytics tools in PLATOON and the rest of

the components will be provided with a REST API endpoint defined using the OpenAPI 3.0

standard.

The meta information will defined by each Analytic Tool and it will follow the format defined

by OpenAPI 3.0 specification.

The path items (end points) and the operations provided are the main focus of this section.

In order to provide a harmonized way to access the Analytic Tools a common set of endpoints

and reusable components must be defined. However, each pilot could extend or adapt them.

A study of the art analysis has been performed and two different machine learning and data

analytics APIs have been identified.

• Azure predictive maintenance OpenAPI: A very simple API with one endpoint to get

the result of the analytic model.

• DEEPaaS API: DEEP as a Service (DEEPaaS) is a REST API that is focused on

providing access to machine learning models. It has been developed by the DEEP

Hybrid DataCloud European Project. 44

Next sections provide information about both approaches and how they will be used in

PLATOON.

The reusable components will be defined by each analytic tool and the data models could be

specific or reuse the semantic models defined in PLATOON.

5.1 Azure Machine Learning example

Deploying an Azure Machine Learning model as a web service creates a REST API

endpoint. You can send data to this endpoint and receive the prediction returned by the model.

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 70 of 99

In Azure the general workflow for creating a client that uses a machine learning web service is:

1. Get the connection information.

2. Determine the type of request data used by the model.

3. Create an application that calls the web service.

Azure does not define a common OpenAPI for accessing the models but allows each model to

define and expose a specific one. However, a very simple example is provided with the

minimum functionality.

The following endpoints and operations are defined:

GET / → Simple health check endpoint to ensure the service is up at any given point
POST /score → Run web service's model and get the prediction output

Along with the operations, three data models are defined: ServiceInput, ServiceOutput and

ErrorResponse.

Next, the OpenAPI 2.0 definition in Jason format is presented:

{
 "swagger": "2.0",
 "info": {
 "title": "myservice",
 "description": "API specification for Azure Machine Learning myservice",
 "version": "1.0"
 },
 "schemes": [
 "https"
],
 "consumes": [
 "application/json"
],
 "produces": [
 "application/json"
],
 "securityDefinitions": {
 "Bearer": {
 "type": "apiKey",
 "name": "Authorization",
 "in": "header",
 "description": "For example: Bearer abc123"
 }
 },
 "paths": {
 "/": {
 "get": {
 "operationId": "ServiceHealthCheck",

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 71 of 99

 "description": "Simple health check endpoint to ensure the service is up at
any given point.",
 "responses": {
 "200": {
 "description": "If service is up and running, this response will be
returned with the content 'Healthy'",
 "schema": {
 "type": "string"
 },
 "examples": {
 "application/json": "Healthy"
 }
 },
 "default": {
 "description": "The service failed to execute due to an error.",
 "schema": {
 "$ref": "#/definitions/ErrorResponse"
 }
 }
 }
 }
 },
 "/score": {
 "post": {
 "operationId": "RunMLService",
 "description": "Run web service's model and get the prediction output",
 "security": [
 {
 "Bearer": []
 }
],
 "parameters": [
 {
 "name": "serviceInputPayload",
 "in": "body",
 "description": "The input payload for executing the real-time
machine learning service.",
 "schema": {
 "$ref": "#/definitions/ServiceInput"
 }
 }
],
 "responses": {
 "200": {
 "description": "The service processed the input correctly and
provided a result prediction, if applicable.",
 "schema": {
 "$ref": "#/definitions/ServiceOutput"
 }
 },
 "default": {
 "description": "The service failed to execute due to an error.",
 "schema": {
 "$ref": "#/definitions/ErrorResponse"
 }
 }
 }
 }
 }
 },
 "definitions": {
 "ServiceInput": {
 "type": "object",
 "properties": {
 "data": {
 "type": "array",

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 72 of 99

 "items": {
 "type": "array",
 "items": {
 "type": "integer",
 "format": "int64"
 }
 }
 }
 },
 "example": {
 "data": [
 [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
]
 }
 },
 "ServiceOutput": {
 "type": "array",
 "items": {
 "type": "number",
 "format": "double"
 },
 "example": [
 3726.995
]
 },
 "ErrorResponse": {
 "type": "object",
 "properties": {
 "status_code": {
 "type": "integer",
 "format": "int32"
 },
 "message": {
 "type": "string"
 }
 }
 }
 }

}

5.2 DEEP Hybrid DataCloud project: DEEPaaS API

The key concept proposed in the DEEP Hybrid DataCloud project is the need to support

intensive computing techniques that require specialized HPC hardware, like GPUs or low-

latency interconnects, to explore very large datasets. A Hybrid Cloud approach enables access

to such resources that are not easily reachable by the researchers at the scale needed in the

current EU e-infrastructure.

One of the objectives of the project is to define a “DEEP as a Service” solution to offer an easy

integration path to the developers of final applications. “DEEP as a Service” includes a set of

building blocks that enable the easy development of applications requiring these techniques:

deep learning using neural networks, parallel post-processing of very large data, and analysis

of massive online data streams

DEEPaaS API is the key component for making the modules accessible to everybody

(including non-experts), as it provides a consistent and easy to use way to access the model’s

functionality. It enables data scientists to expose their applications through an HTTP endpoint,

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 73 of 99

delivering a common interface for machine learning, deep learning and artificial intelligence

applications.

The DEEPaaS API is available for both inference and training. DEEP platform provides

novelties such as asynchronous training and control to launch, monitor, stop and delete the

training directly from the web browser in a transparent way through the DEEPaaS API.

The functional improvements are detailed as follows:

1. Multiple asynchronous trainings (i.e. deployment of multiple instances or retraining a

model with available data)

2. Two-ways of state monitoring and report: 1) a list of trainings (running or completed)

and 2) status of running training (based on UUID)

3. Possibility to cancel running training

4. Various features such as API version information, debug information, passing

parameters for prediction, etc.

Through the DEEP as a Service API, endpoint users get access to the DEEPaaS API, via a

swagger user interface (GUI) allowing them to interact with their models:

1. check the model metadata and details

2. retrain a certain model with their own data

3. get the list of trainings currently running

4. get the status of a training

5. cancel the training

6. make a prediction with a certain trained model

Figure 57: DEEP as a Service API endpoint

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 74 of 99

5.3 PLATOON Analytic toolbox OpenAPI definitions

Next, PLATOON approach for the definition of the 3 sections of the OpenAPI APIs for the

Analytic toolbox services is defined.

The meta information will defined by each Analytic Tool and it will follow the format defined

by OpenAPI 3.0 specification and it will include: openAPI version, Title, version and

description of the API, Authentication (Basic Auth, Oauth2, etc), API meta info (contact,

license, usage conditions, etc) Meta data example: info, servers and authentication:

openapi: 3.0.0
info:
 version: 1.0.0
 title: PLATOON Predictive Maintenance API
 description: A simple API to illustrate OpenAPI concepts

servers:
 - url: https://platoon.pm.io/v1

Basic authentication
components:
 securitySchemes:
 BasicAuth:
 type: http
 scheme: basic
security:
 - BasicAuth: []

The path items (end points) and the operations provided will follow the DEEPaaS API

specification. However, not all the endpoints of the DEEPaaS API have to implemented by all

the tools. The minimum endpoints are:

As an example, a PLATOON and endpoint could be:

/v2/models/SmartGridLoadEnergyForecaster/predict.

Some potential synergies could be to co-develop a tool amongst similar pilots, validate same

tool in different pilots or validate different tools in same pilots. The similar pilots could share

the same OpenAPI url.

The result of this analysis is summarised in the following table:

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 75 of 99

The reusable components that define the common data models will be defined by each analytic

tool and they could be specific or reuse the semantic models defined in PLATOON.

Apart from using a common API specification which is the means to send/receive information,

in order to guarantee the full interoperability all the developed data analytics tools should take

into account the common data models defined in task T2.3 “Data models”.

These common data models define the common language to understand the received data and

to send the data to the rest of the components of the architecture according to a standard data

model that they can understand.

However, this does not mean that all the components/tools must use internally the common data

models defined in task T2.3 “Data models”. In fact, different components/tools internally might

Figure 58: Cross pilot synergies regarding data analytics tools

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 76 of 99

use some internal data models different to the ones defined in T2.3 “Data

models”. Furthermore, the common data models defined in task T2.3 will be semantic data

models. Nevertheless, not all of the data analytics tools will actually do analytics on semantic

data. The proposed solution for dealing with the PLATOON data models in Data Analytics

Tools is explained in more detail in task T4.1 “PLATOON analytical toolbox design”.

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 77 of 99

6 Reference architecture

In task T2.1, the Platoon Ref architecture has been defined (see figure 59). All the details of the

specific components can be found in deliverable D2.1.

The main insight driving the current task is to create solutions capable of controlling, in a secure

and efficient manner, the data distribution from the primary sources to the business tools used

to take advantage of them. That involves the transition of the data through several components

and, thereby, the need for transforming these data at each step to be understood by their

receptors.

The concept of interoperability involves the capability of sharing information in systems where

several components work together, by using standard notations and converting the data, in

execution time, to the formats readable for the consuming components.

This process involves the data acquisition, management and analysis that take place along

several layers as follows (please refer to the deliverable D2.1 “Platoon reference architecture”):

Figure 59: PLATOON reference architecture logical view

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 78 of 99

1. Raw data is acquired from the pilot security infrastructure: at the pilot physical

infrastructures, devices, data sources and from external data/open data sources in several

formats.

2. The IoT Connector captures the data coming from physical devices such as sensors,

devices or actuators, while the Data Connector those coming from logical software such

as complete or legacy systems. The corresponding IoT agent will transform the native

IoT protocol to JSON-LD.

3. Data goes through the semantic adapter in order to convert non-semantic data into

semantic data and to the context broker, the federated query and the Unified Knowledge

Base if no further processing is needed (maps with common data models and can be

used to update data).

4. NGSI-LD REST API creates the entities from the data packages, according to the data

model schema. Entities are encoded with JSON-LD notation.

5. Formatting data as NGSI-LD entities involves their step toward the data management

layer, entering the Context Broker where they will provide the information from the

context makers.

6. Data are addressed to the business intelligence layer, where they are subjected to the

analytical processes (see section Fehler! Verweisquelle konnte nicht gefunden

werden. for Data Analytics Toolbox APIs) making them useful for the target market

(see section Fehler! Verweisquelle konnte nicht gefunden werden. for Marketplace

APIs).

6.1 Context Data Broker

The Context Data Broker is one of the main components from the PLATOON architecture that

will use the NGSI-LD API.

To understand the meaning of the Context Data Broker (or just Context Broker) and its role

within PLATOON, first it is interesting to know the concepts of Data Space and Context.

Therefore, the following paragraphs will cover the main insights to explain these key concepts.

Complex processes taking place in the energy sector usually involve high amounts of data

traffic among different operating devices, some of them being the source of information and

others the ones consuming data. To ease the proper distribution of huge amounts of data being

acquired in an efficient, standardized and safe way, modern industry will in future use data

spaces. Said data spaces enable companies and organizations to hold a strict control on their

data by defining the corresponding methods and connectors for an efficient data traffic.

Within the data space, a connector is the component dealing with the data transfer from both,

the data sources at the physical layer to the data space, and from the data space to the context

consumers. Besides this, the connector controls the access to the data space and guarantees the

security of the data during these transitions.

For said purposes, Data Security, Privacy and Security framework have to be created with the

following features:

• Access control, restricted to those users properly identified with their credentials.

• Profiling of the users determining the owning of the data, their management or query

and any other useful roles with different permissions.

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 79 of 99

• Data availability along all the components within the process, which is achieved by

creating safe connections among the data owners and the subscribed data consumers.

• Interoperability, since the use of a standardized data model enables the capability of the

connectors to link data from different sources within a same data space.

• Wide diversity of data sources, which can arise from different companies working on

connected processes, physical sensors, data histories or open datasets.

• Compatibility with other software to extend their applicability and business chances.

WP3 is responsible for creating such Data Security, Privacy and Security framework based on

IDS (International Data Space) reference architecture.

Moreover, the term Context refers to a digital description of the physical environment that is

built from the extraction of a collection of key reference magnitudes, such as weather

parameters, energy consumption in clients, etc. All this information is stored in data entities

named as Context Elements, data to be shared in the data space and in PLATOON represented

in NGSI-LD format. Magnitudes acquired from sensors in the physical layer are serialized on

site by a device firmware and sent through an IoT connector to be written at the corresponding

context elements.

Context is also supported by static information from the companies involved, either from their

data history or from open repositories belonging to third parties like meteorological services

releasing weather parameters or forecasting. The set of devices responsible for the

measurement, serialization and transmission of magnitudes, together with the other datasets

providing context information, are known as Context Makers, also known as Data

Providers/Owners in IDS terminology.

There are also applications known as Context Consumers, also known as Data Consumers/User

in IDS terminology, that take advantage of the context data by consuming information from the

context elements. Target market utilities also consume this information. In PLATOON the main

components holding the role of context/data consumers are the Data Analytics Tool providers

and the Market Place is the one-stop shop that puts together Data Providers/Owners and Data

Consumers/Users.

The IDS Broker can be described as an information sharing tool aimed to send and acquire data

from different organizations, control centers and devices in a safe and structured way. Context

Broker is a useful communication channel to carry out projects where great amounts of data

arising from different sources have to be managed.

At the technological level, the Context Broker is the component responsible for managing,

updating and performing queries to the information stored at the context elements. Data arising

from the context makers and stored in context elements are published by the Context Broker,

becoming available for the context consumers upon agreement of the privacy policy. Thus,

Context Broker works as a server of NGSI-LD formatted entities, which are the only type of

data units that can be shared by this.

In PLATOON, the Context Data Broker enables the discovery, gathering and publishing of near

real time context information through Context Management APIs. Context Broker, through its

interface, makes available the context information regardless data source and using different

types of interactions: query and subscription, represents the synchronous and asynchronous

interactions with context data source.

Synchronous interactions are performed using a query mechanism to obtain context

information; the component allows building queries, using different types of filters, in order to

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 80 of 99

retrieve information with high levels of precision. The asynchronous interaction is performed

by publish-subscribe mechanism: a notification is generated when published data meets the

subscription conditions; this feature is really useful to avoid the implementation of a polling

process on data sources of interest, allowing to be notified when the context information

changes.

6.2 IoT Connector

The IoT Connector is in charge of transmitting the raw data coming from the device to the

virtual entity representation at the Data Management Layer; sending commands or actions

request to an actuator device; mapping of device and its features to a virtual entity with related

attributes and metadata. IoT Connectors should also be able to deal with security aspects

(authentication and authorization of the channel) and data sovereignty (IDS) aspects. In

addition, they should provide other common services to the device programmer. The following

figure indicates the role and position of IoT Connector in PLATOON architecture.

FIWARE IoT Agent45 is an example of a reference implementation of IoT Connector. The IoT

Agents work as protocol translation gateways, used to fill the gap between traffic sent and

received on the South Port (typically lightweight protocols aimed to constrained devices) and

traffic sent and received on the North Port which uses the standard NGSI protocol. Multiple

IoT Agents are provided such as IoT Agent for JSON for a bridge between HTTP/MQTT

messaging (with a JSON payload) and NGSI, IoT Agent for LWM2M – a bridge between the

Lightweight M2M protocol and NGSI, IoT Agent for LoRaWAN – a bridge between the

LoRaWAN protocol and NGSI, etc.

Each individual IoT Agent offers is driven by a config.js configuration file contains explicit

custom settings based on the protocol and payload the IoT Agent is translating. It will also

contain some common flags for common functionality provided by the IoT Agent node link

(e.g., for connecting to a context broker or for authentication). The IoT Agent node library46

offers a standard API for provisioning devices and ensures that each IoT Agent can configure

Figure 60: IoT connector in PLATOON architecture

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 81 of 99

its device communications using a common vocabulary regardless of the payload, syntax or

transport protocol used by the device itself. A series of additional plugins are offered where

necessary to allow for expression parsing, attribute aliasing and the processing of timestamp

metadata.

Standardized OAuth2-based security is available to enable each IoT Agent to connect to several

common Identity Managers (e.g., Keystone and Keyrock) so that communications can be

restricted to trusted components.

6.2.1 IoT Connector APIs

The interfaces of IoT Connector are indicated in D2.1 “Platoon reference architecture”, as

follows:

Interfacing Component Interface Description

IoT devices, gateways These data sources will send data to the IoT Connector.

Security & Privacy The IoT connector interacts with this module to provide

security and sovereignty over the data.

Semantic Adapter This component is used to convert the data into common data

models.

Context Broker This component is used by the IoT Connector to update data,

if data already maps with the common data models

IoT Connector provides the following functions to the interfacing components:

• Offering a standard location to listen to device updates

• Offering a standard location to listen to context data updates

• Holding a list of devices and mapping context data attributes to device syntax

• Security Authorization

IoT Connector works based on REST API principles and the communication of the interfaces

is performed by ‘receive data’, ‘receive command’ and ‘update context’ using the following

HTTPS requests:

• POST: Creates a resource or list of resources
• PUT: Updates a resource
• GET: Retrieves a resource or list of resources
• DELETE: Delete a resource

 In order to send a command to a device, the IoT Agent sends a HTTP POST request to the

endpoint supplied by the device. IoT Connector handles the HTTP requests generated from the

Context Broker towards an IoT device (Southbound traffic). Southbound traffic consists of

‘commands’ made to actuator devices which alter the state of the real world by their actions.

For example, a command ‘ON’ would switch on the lamp in real life by changing the state of a

lamp. The body of the POST request holds the command.

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 82 of 99

A device can report new measures to an IoT Connector using an HTTP GET request. The HTTP

requests generated from an IoT device via an IoT Connector towards the Context Broker are

known as northbound traffic. Northbound traffic consists of ‘measurements value’ made by

IoT devices to relay the state of the real world into the context data of the system. For example,

a measurement from a humidity sensor could be relayed back into the context broker to indicate

that the moisture level of the entity has changed. A subscription could be made to be informed

of such changes and there provoke further actions. The HTTP GET request composes along

with the following query parameters:

• i (device ID): Device ID (unique for the API Key).

• k (API Key): API Key for the service the device is registered on (OAuth2 based

security).

• t (timestamp): Timestamp of the measure. Will override the automatic IoT Connector

timestamp (optional).

• d (Data): I.

The i and k parameters are mandatory. IoT Connector payload

HTTP POST can also be used. This case, d (Data) is not necessary - the key-value pairs of the

measurement are passed as the body of the request. i and k query parameters are still

mandatory:

• i (device ID): Device ID (unique for the API Key).

• k (API Key): API Key for the service the device is registered on.

• t (timestamp): Timestamp of the measure. Will override the automatic IoT Connector

timestamp (optional).

The i and k parameters are mandatory.

6.3 Data Connector

Data connector is a component which is important and necessary to allow the integration of

various field devices (e.g. IED, SMs, PMUs, sensors, etc.). Data connectors might be part of

the edge or central PLATOON architecture and in both cases it is responsible to correctly query

the legacy and property system or to expose interfaces suitable for receiving information from

them in the push/pull manner.

Data Connectors should also be able to deal with security aspects (authentication and

authorization of the channel). and data sovereignty (IDS) aspects interacting with the Security

& Privacy module of PLATOON’s reference architecture. This component should be able to

access to legacy/proprietary data using several approaches (e.g. read from API, read csv or json

file, read from SQL or NoSQL databases, etc.), furthermore this component must interact with

the Semantic Adapter to convert non-semantic data into semantic data, the Data Curation and

Integration module to harmonize and/or integrate the data with additional data and/or metadata

or with the Context Broker if no further data processing is needed.

To achieve vertical operability the data connector will address the IEC 61850 standard, whose

details are included in the annex (section 8) of this document.

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 83 of 99

7 Conclusions

The first version of this document was prepared and developed in parallel to T2.1 “Platoon

Reference Architecture” and to the design and development of the marketplace component in

T3.4 “Marketplace Design and Setup” (M12), so the information contained was not definite.

The idea was to complement or change it in the second version planned for M27, depending on

the design/development of the components within the PLATOON architecture. Any

updates/modifications were to be included in the present version of this deliverable.

The partners who participated in the preparation of the original document were consulted in

order to confirm changes or updates achieved. At the present time, there were not many changes

reported and the defined schemas are being used and being implemented in the pilots. Therefore

in conclusion no reportable updates can be reported in this update deliverable.In the first

version, there was no mention made regarding the energy domain, OGEMA (Open Gateway

Energy Management), so a section has been added on this framework in section 8.2.

The aim of the deliverable is to define a set of APIs, to enable the interoperability of the different

components and modules of the logical architecture of Platoon Platform and also, the effective

and easy communication of data with the rest of platforms and systems that we can find in an

ecosystem that encompasses the generation, distribution, consumption and value-added

services of energy.

We demonstrate that this set of APIs is compatible with the existing different data models used

by the different pilot projects, being proprietary or standardized models, and compatible with

the different components of the Platoon Platform.

In the deliverable, we introduce the main concepts and the specific terminology behind the

design of APIs, and show the importance of interoperability following FAIR principles.

In the first set of APIs defined, by using NGSI-LD we found major advantages regarding

“context” information exchange:

1. Using NGSI-LD APIs, applications can flexibly discover and query relevant

information. The data discovery is very agile, and the query capabilities support the

most common questions that are used in information systems.

2. NGSI-LD APIs precisely communicate the nature of the context information for a given

service, such as its period of validity, its geographic constraints, and other semantically

important information.

3. To ensure interoperability, the NGSI-LD APIs through its information model, defines

the meaning of the most commonly needed terms and uses the Platoon domain-specific

extensions to model any other type of information.

With the second set of APIs defined, we demonstrate that by using TM Forum standard REST

based APIs, we are able to attend the requirements of the Data Marketplace layer components

with a flexible integration among operations, management and billing systems.

Finally, the Data Analytics Toolbox dedicated APIs are the key element that will enable the use

(and reuse) of the tools from the PLATOON Data Analytics Toolbox by the partners of the

project in different pilots.

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 84 of 99

8 Annex 1

8.1 IEC 61850

IEC 61580 is an international standard that addresses communication protocols for intelligent

electronic devices (IED) at electrical substations. The general overview of the standard and its

part relations is shown in Figure 61. The IEC 61580 standard was derived from numerous

incompatible standards to unify communication among different devices within substation.

Standard provides a design guideline for automation system, defining requirements for data

transmission, how to describe devices and how to exchange information among device at

runtime and at configuration time.

In the PLATOON the following parts are relevant:

• IEC 61850-9-2 Sampled values (SV) over ISO/IEC 8802-3-2

• IEC 61850-7-2 Generic Object Oriented Substation Events (GOOSE)

• IEC 61850-7-2, IEC 61850-8-1 The Manufacturing Message Specification (MMS)

IEC 61850 standard provides two ways to exchange information: 47

1. Client-server

2. Publisher-subscriber

Figure 61: General standard of IEC 61850

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 85 of 99

Client-server variant is used for substation automation system services to control and supervise

of substation asset. It supports data read (a value or attribute), write (configuration attributes),

control (controlling switching devices with direct operate or select before operate, to validate

the control parameters and reserve the resource), reporting (e.g. event driven reporting), logging

(local storage of timestamped data/events), get directory information and file transfer. In the

client-server model for each information exchange is followed by confirmation message to

guarantee the data is received by the IED using TCP/IP addressing scheme.

Publisher-subscriber variant provides two additional ways of transferring messages in the time

critical services. First variant is the multicast of time critical messages by means of GOOSE

mechanism and second variant by means of SV as shown in figure 16. GOOSE and SV are

stream based protocol designed for high speed data transmission across the system with low

latency. GOOSE service is mainly used for transmission of information like status changes,

blockings, releases or trips between IEDs while the SV is used for streams of data (e.g. current

and voltage samples).

8.1.1 Data models

Data models defined in IEC 61850 standards are application independent and are object

oriented data models. All application functions are broken down into the small pieces, which

may communicate with each other and may be implemented separately in different IEDs. The

basic objects are called logical nodes (LN). The class name of the LN refers to the function the

data object belongs to. These data objects may be mandatory, optional or conditional and they

contain different attributes, which represent the values or properties of the data objects.

Figure 62: Protocol stack of of IEC 61850-90-5

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 86 of 99

The class names of LNs and names of data objects and their attributes are standardized. The

data hierarchy is shown in Figure Fehler! Verweisquelle konnte nicht gefunden werden..

Example of the IEC 61850 data model hierarchy to determine the circuit breaker position:

A1.LD0.CBXCBR.Pos.stVal

Where A1 is a physical device, LD0 is a logical device (LD) that includes many logical nodes

and is free to choose the name. CBXCBR1 is a logical node and is the virtual representation of

device components contains the information produced and consumed by a group of domain-

specific application functions. CB is prefix and is free to choose and is application specific,

XCBR Class name is fixed and it stands for circuit breaker, while the suffix 1 is usually the

number of instances. The maximum length of LN is 12 characters. A data object (DO) is a

representation of the common information in various nodes. All devices need to follow a

common naming scheme. Therefore, devices from different manufacturers can access the same

device. The Pos stands for the position and stVal status value is CODED ENUM for example:

00 – intermediate-state, 01-off, 10-on, 11 bad-state.

8.1.1.1 Libiec61850 API

At PLATOON we will rely on the opensource libraries such as libiec61580, which is server and

client library implementing protocols MMS, GOOSE and SV. The library is written in C

applying C99 standard to provide maximum portability among different OS and hardware

architectures, for IEC61850.

Figure 63: Data hierarchy Figure 64: Data hierarchy

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 87 of 99

8.1.1.2 Client-server API

The IEC 61850 client and server API contains functions to support model discovery, reading

and writing data attributes, data set handling, configuration and reception of reports, file

services and control operations. The libiec61850 API is close related to Abstract

Communication Service Interface (ACSI) standard as defined in IEC 61850-7-2. The library

consists of IEC 61850 client API and server API (MMS over TCP/IP).

To create a server you first need to create new ledServer object, which is used for managing the

MMS protocol stack and data model. The second line of the code initializes the MMS server

values with default values, from this point on the MMS server can autonomously handle client

connections. In the next line, the code starts the protocol stack and it starts listening to client

connection. Each client connection starts in a new thread. After initialization and start used

need to provide its own code to process the values from MMS or react on client activities. The

last two lines stop the MMS server with closing all clients connections and cleaning up the

resources we have defined during the initialization process.

IedServer iedServer = IedServer_create(&staticIedModel);
IedServer_setAllModelDefaultValues(iedServer);
IedServer_start(iedServer);

//main code here

IedServer_stop(iedServer);
IedServer_destroy(iedServer);

To make a connection to the server, you have to create IedConnection object and afterwards

the connection is established by using ledConnection_connect method. Led connects takes as

arguments: IedCpmmectopm object, a pointer to error stack, IP address or hostname and TCP

port. After finishing the executing the main code, you have to close connection and cleanup

resources by calling IedConnection_close and IedConnection_destroy functions.

IedClientError error;
IedConnection con = IedConnection_create();
IedConnection_connect(con, &error, "192.168.1.2", 102);

if (error == IED_ERROR_OK) {
// main code

IedConnection_close(con);
}
IedConnection_destroy(con);

8.1.1.2.1 Reading and writing data objects

Functions ledConnection_readObject and ledConnection_writeObject can read and writer

simple and complex data objects. Both of the functions have similar input parameters: the first

argument is the connection object (IeDConnection) as shown in establishing connection

examples. The second argument is a pointer to IedClientError variable (client connection

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 88 of 99

example), next argument is data object reference you want to access (type const char), followed

by Functional constraints enumerator. To read all values o fan IEC 61850 data object you

have to call multiple time readObject function. An example of reading the analog measured

values from the server:

MmsValue* value = IedConnection_readObject(con, &error, "simpleIOGe-

nericIO/GGIO1.AnIn1.mag.f", MX);

Where MX is IEC61850_FC_MX enumerator which present measured analog values, ST

would mean reading status values. The MmsValue instance holds the results from the read

function call, but the same instance can be used when writing data object to a server as the last

input argument in writeObject call:

IedConnection_writeObject(con, &error, "simpleIOGenericIO/GGIO1.Nam-

Plt.vendor", DC, value);

Additionally, the client API also allows using functions that allow read and writer native data

types instead dealing with objects. An example of these function:

float magF = IedConnection_readFloatValue(con, &error,
 "simpleIOGenericIO/GGIO1.AnIn1.mag.f", MX);

8.1.1.2.2 Data sets

To read data sets (e.g. groups of data attributes or functional constraint data objects), you have

first to define a data set and request them with a single read. The client API supports the

following data related services:

• Read data set values

• Define a new data set

• Delete an existing data set

• Read the directory (list of variables) of the data set

ClientDataSet is conitainer to store the values and consist of the following functions: functions:

Void ClientDataSet_destroy(ClientDataSet self);
MmsValue* ClientDataSet_getValues(ClientDataSet self);
char* ClientDataSet_getReference(ClientDataSet self);
int ClientDataSet_getDataSetSize(ClientDataSet self);

To access data set related services the following functions can be used, such as:

• IedConnection_readDataSetValues

• IedConnection_createDataSet

• IedConnection_deleteDataSet

• IedConnection_getDataSetDirectory

An example to read the values from a data set:

ClientDataSet dataSet = IedConnection_readDataSetValues(con, &error,
"simpleIOGenericIO/LLN0.Events", NULL);
if (error == IED_ERROR_OK) {

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 89 of 99

printf("Read data set %s\n", ClientDataSet_getReference(dataSet));

IedConnection_readDataSetValues(con, &error, "simpleIOGeneri-

cIO/LLN0.Events", dataSet);
}

8.1.1.2.3 Reports

Reports are used for event-based transmission, so you do not need to send and read request to

the server periodically. Reports are presented as data sets. To handle reports at the client side,

the API defines following data types:

• ClientReportControlBlock –data container

• ClientReport – represents a received report

• ClientDataSet – container for the data values of a received report

• ReportCallbackFunction – callback function triggered when a report is received

• ReasonForInclusion – enumeration to indicate the reason for the inclusion of a data set

member into the report

The server needs to be configured to receive reports by enabling the Report Control Block

(RCB). The IEC 61850 distinguish between buffered and unbuffered reporting. To start

reporting, you should first read values of the RCB with IedConnection_getRCBValues function

for the unbuffered report:

ClientReportControlBlock rcb = IedConnection_getRCBValues(con, &error,

"simpleIOGenericIO/LLN0.RP.EventsRCB01", NULL);

And for the buffered report:

ClientReportControlBlock rcb = IedConnection_getRCBValues(con, &error,

"simpleIOGenericIO/LLN0.BP.EventsRCB01", NULL);

The function reads all values of the RCB from the server and creates an instance of

ClientReportControlBlock.

To prepare the client to receive reports, you have to provide a callback function to the client

API.

static void reportHandler (void* parameter, ClientReport report)

{
 //report callback function, e.g. custom event code
}

ClientDataSet dataSet = IedConnection_readDataSetValues(con, &error,

dataSetReference, NULL);
IedConnection_installReportHandler(con, "simpleIOGener

icIO/LLN0.RP.EventsRCB", reportHandler, NULL, dataSet);

Where dataset is used to store report data, while the function

IedConnection_installReportHandler is used for installing a report handler functions and

connect it with the dataset.

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 90 of 99

8.1.1.2.4 Client authentication

Only basic password authentication is supported. Example to activate authentication:

AcseAuthenticationParameter auth = calloc(1, sizeof(struct sAcseAu-

thenticationParameter));

auth->mechanism = AUTH_PASSWORD;
auth->value.password.string = "secretpassword";

IsoServer isoServer = IedServer_getIsoServer(iedServer);
IsoServer_setAuthenticationParameter(isoServer, auth);

IedServer_start(iedServer);

The first line of the code allocates memory for the AcseAuthenticationParameter data structure,

second and third line initialize the structure with the method and the password which is

presented as a string. Next line provides access to the IsoServer instance and feeds it with

authentication parameters.

8.1.1.3 Publisher-subscriber API

For time-critical situation, the library provides API for the publisher-subscriber scenario,

mainly used inside substation to distribute sample values and GOOSE among IED devices. The

library supports single or multiple subscribers. For multiple subscriber option, the multicast

address is used and clients have to be configured to listen to a specified multicast address.

Below a publisher example is shown.

SVPublisher svPublisher = SVPublisher_create(NULL, interface);

 if (svPublisher) {

 SVPublisher_ASDU asdu1 = SVPublisher_addASDU(svPublisher, "svpub1",

NULL, 1);

 int float1 = SVPublisher_ASDU_addFLOAT(asdu1);

 int float2 = SVPublisher_ASDU_addFLOAT(asdu1);

 int ts1 = SVPublisher_ASDU_addTimestamp(asdu1);

 SVPublisher_setupComplete(svPublisher);

 float fVal1 = 1234.5678f;

 float fVal2 = 0.12345f;

 while (running) {

 //prepare data

SVPublisher_publish(svPublisher);

 }

 SVPublisher_destroy(svPublisher);

 }

In the first line creates a new IEC61850-9-2 SV publisher. The first parameter is optional for

setting VLAN options and destination MAC address; the second parameter is the name of the

interface over which the SV publisher should send SV packets (e.g. “eth0”). It returns new SV

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 91 of 99

publisher instance. SVPublisher_addASDU creates an Application Service Data Unit (ASDU)

and add it to an existing SV publisher. Next three-line reserves the memory for data and maps

it to local variables. SVPublisher_setupComplete prepare the publisher for publishing. In the

main code execution, the data is prepared according to initial definition and

SVPublisher_publish function publish all registered ASDUs.

On the subscriber side access to the data requires prior knowledge of the data set (see publisher

example for data set and definition). The example of subscriber:

SVReceiver receiver = SVReceiver_create();

SVSubscriber subscriber = SVSubscriber_create(NULL, 0x4000);

SVSubscriber_setListener(subscriber, svUpdateListener, NULL);

SVReceiver_addSubscriber(receiver, subscriber);

SVReceiver_start(receiver);

if (SVReceiver_isRunning(receiver)) {

signal(SIGINT, sigint_handler);

while (running){

Thread_sleep(1);

}

SVReceiver_stop(receiver);

}

SVReceiver_destroy(receiver);

In the first line, we define a new SV receiver instance in the next line we create a subscriber

listening to SV messages or data stream that is identified by its APPID 4000h, which is the

default value if not set differently by publisher. In the third line, we install a callback handler

for the subscriber. Following line connect the subscriber to the receiver. SVReceiver_start

functions start listening to the SV messages in the new thread. The callback function is called

once the data is received, so we have to define the callback function as was called in the listener

function:

svUpdateListener (SVSubscriber subscriber, void* parameter,

SVSubscriber_ASDU asdu)

{

 const char* svID = SVSubscriber_ASDU_getSvId(asdu);

 //handling the data

}

The data can be handled similar way as were defined in publisher example with the dual

functions. We are again operating with ASDU and extracting data with dedicated functions like

SVSubscriber_ASDU_getFLOAT32() to get float value from ASDU.

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 92 of 99

8.2 OGEMA

OGEMA (Open Gateway Energy MAnagement) is an open software platform that supports

standardized building automation and energy management. The OGEMA platform can be

applied in households, commercial environment and industries. 48

OGEMA links the customers´ loads and generators to building automation and energy

management applications. By providing a manufacturer- and hardware-independent platform,

OGEMA allows energy flows within end customer premises to be optimized with high degree

of modularity.

8.2.1 Framework architecture

The core concept of the framework is to provide a hardware independent environment for

energy management applications. The software is designed to be installed on a Gateway

computer located between the customer and the Smart grid, acting as a firewall between the

public and private communication systems. The Gateway is configured so that only certain

interactions are allowed.49

Applications installed in OGEMA can obtain access to customer devices, user displays, smart

meters, measuring data, as well as data provided by external market participants, like tariff

information or grid parameters. The goal is to provide a platform for Smart Building and Smart

Home applications supporting the full range of Smart Grid applications at the customer side

with a single efficient hardware platform, which features all the necessary communication

connections. New devices and functionalities can be connected and added in a “plug&play”

manner with minimum user interaction.

Figure 65: OGEMA framework in a Smart Grid/Smart Building environment

The OGEMA software acts as an operating system that allows applications to access different

types of connected hardware and remote service providers without having to care about the

actual physical realization of the connection. This is achieved by using drivers to take care of

device-specifics. Just as in the case of a normal Operating System, say Linux, the drivers are

hardware- or communication-specific pieces of software that transfer OGEMA language into

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 93 of 99

commands for the devices or communications. The language of OGEMA is the representation

of states in a data graph called resource graph and the manipulation of these data.

The framework itself implements basic functionalities such as management of applications and

communication drivers, an API to work with the resource graph, user administration and a

REST interface.

However, the real value for the customer comes with the installed applications and drivers that

perform services related to energy management and home automation and allow unifying

devices from different vendors into one system. Depending on the installed applications,

different OGEMA systems can be realized with the OGEMA framework.

8.2.2 OGEMA API

The most important further concepts of the OGEMA API are:

• A central run-time environment for applications

• Access to external devices via standardized data models and device services

• Plug & Play registration of new devices, definition of standardized services for typical

functions

• Open interfaces for applications, and communication device drivers, and realization of

a graphical user interface for user control of the system

• Resource control based on user-specific and application-specific access rights and

permissions

8.2.2.1 Installation and Management of applications

OGEMA applications and drivers can be installed via marketplaces or from a file folder. The

API functionalities for administrative applications that install new applications (including

administrator interaction) are defined in org.ogema.installationManager. Before the

installation, the required permissions must be declared by the application and must be approved

by the administrator.

Declaration of required and optional permissions requested is made by two files:

permissions.perm and OGEMAPermissions.perm. The permissions.perm file contains Java

permissions (extending java.security.Permission) according to the Java specification, and

OSGi-permissions according to the OSGi API documentation.

OGEMA applications export the OSGi service application, for which the methods start() and

stop() are defined. The framework automatically detects applications based on this service. To

start and stop the applications, the respective methods of the application are called. When

calling the start method, the application is being passed a reference to an ApplicationManager

that serves as the application’s entry point to the OGEMA framework. Applications hence do

not need to (and should not be permitted to) get OSGi services just for the sake of getting access

to OGEMA.

8.2.2.2 Resource Management

OGEMA resources have resource names. For top-level resources, the name can be freely chosen

by the application creating the top-level resource. The names of sub-resources are defined by

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 94 of 99

the resource type of their parent resource – with the exception of decorators, for which again

the creating application can choose a name. To avoid naming conflicts between different

applications, the method getUniqueResourceName has been defined on the ResourceManager

service, which ensures that two applications requesting the same resource name will not get the

same name but a unique one that is similar to the requested name.

The nodes in the resource graph can be addressed via paths, starting at some top-level resource

(with a unique name) and then following a sub-resource trail down to the respective resource.

This path is not necessarily unique for a given resource: different top-level resources may share

a common subresource which has been inserted into either’s resource tree via a reference. In

principle, any number of paths to a resource can exist. But there is always exactly one path

leading to the resource that does not contain references. This path is called the location of the

resource. Access permissions to a resource are determined by its location, while listeners on

nodes of the resource graph are determined by path.

An application can parse and modify the resource graph via the methods defined in the resource

management services ResourceManagement and ResourceAccess, as well as Java objects of

type Resource.

Initial access to top-level resources has to be performed via the resource management services,

that return a Resource object (this is true for direct access as well for indirect access via resource

demands, which also have to be registered with the resource management). Given an initial

Resource object, it is possible to navigate further along the resource graph to which the object

is connected. Resource objects are always associated to a path.

On top of the resource access granted to an application in terms of permissions, there are three

different access modes to a resource that applications can have, which refer to the values in

simple resources. By default, an application is granted shared write access to a resource, which

means it can read and write the value. If an application determines that no other application

should write the values in a resource, it can demand exclusive write access with some priority.

An application that is granted exclusive write access takes the ability to write to the resource

from all other applications, leaving them with read access. Higher priorities override lower

ones; a demand for shared write access always has a lower priority than any exclusive write

demand. Applications can add listeners to resources to be informed about changes in their

access states.

Navigation via the resource objects allows navigation into graph nodes that do not exist (yet).

Such handles on a non-existing resource are called virtual resources. It is possible to register

listeners on virtual resources (e.g. to be informed when someone creates the node) and to call

the create() method on them. After creation a resource is inactive. In this state it can be

navigated to and be manipulated, but it is invisible to resource demands, and therefore to most

other applications. To make it visible the resource must be activated, putting it into the active

state. OGEMA does not provide default values for simple resources. An application must

provide a sensible value before activating a simple resource. If it cannot do so, it should not

activate the resource.

In some cases modifications to the resource graph cannot be performed with a single call to the

OGEMA services offered, and a so-existing intermediate state would lead to an illegal state of

the resource graph (e.g. re-setting an interval which implies re-setting the minimum and the

maximum value). To avoid illegal intermediate states of the resource graph applications can

combine multiple commands into transactions. Transactions are objects that can be requested

by the ResourceManager and filled with commands. Upon invocation, all of the commands are

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 95 of 99

then executed in one “atomic” operation that guarantees that no application will see an

intermediate state in which only part of the commands have been executed.

OGEMA allows defining complex resource patterns. Resource patterns consist of a definition

of the root node’s type and a set of other resources with a resource type and a defined path

relative to the root ode. Applications can use such resource patterns to create instances of it in

the resource graph – the root node then is a top-level resource. Also, OGEMA allows registering

a resource pattern demand that allows an application to be informed and updated about all the

matches of the pattern in the resource graph. In the latter case, the root node does not need to

be a top-level resource.

8.2.2.3 Resource Listeners

The OGEMA API defines a set of different event listeners related to changes in the resource

graph.

1. A resource demand listener is registered on a particular resource type, and invokes a

callback whenever a resource of the respective type is activated or deactivated.

Additionally, it is invoked for each suitable active resource once directly after

registration. The resource demand listener is designed for the task of finding and

keeping track of all active resources of a given type.

2. Resource structure listeners are registered on individual resources (implying they are

registered on a path, not a location). Once registered, they are informed about structural

changes of this resource, such as creation/destruction, activation/deactivation,

adding/removing of subresources or the change of the path’s location. A change of a

simple resource’s value is not reported to a structure listener – the more specialized

resource listener has been defined for this type of event.

3. Access mode listeners can be registered on individual resources to inform the registering

application about changes of its access mode to the respective resource. This includes

access mode changes caused by the application’s own change requests and changes

caused by another application’s requests (e.g. losing write access due to the other

application being granted exclusive write access). The change in access mode is not a

structure event, since it is specific to each application, while resource structure events

are identical for all applications.

4. A resource change listener is registered on an individual resource, and leads to a

callback whenever the value or the time series of this resource is written to (even if the

write command re-writes the same value or time-series again). The listener can be

registered recursively, in which case the listener is invoked whenever the value/schedule

of any of the resource’s subresources changes. Due to the reference and the decorator

mechanism of the resource graph, recursive registration can lead to unexpected

callbacks in a complicated resource graph. A nonrecursive resource change listener

registered on a non-simple resource can never be invoked.

5. A resource pattern listener is the equivalent of the resource demand listener registered

on a resource pattern instead of a resource type. Instead of keeping the application

informed about all active instances of a resource type it keeps the application informed

about all active matches of a resource pattern.

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 96 of 99

8.2.2.4 Logging

Two types of logging are supported by OGEMA, a text logging support for applications and an

automatic logging of past resource states. The text logging via the OgemaLogger is created as

a direct extension of the slf4j framework. The logger API suggests applications how to perform

their logging, but the actual implementation of the log commands is largely left to the

framework. Particularly, an administrator application can get access to the loggers via the

AdminLogger interface, which allows to configure some of the loggers’ behavior.

Some simple resource types can be configured for automatic logging. The log data and their

configuration are available from the method getHistoricalData() defined in the resources’

interface. Data logging can be configured for periodic logging or for logging whenever the

resource’s value changes. The historic values are stored persistently as a time series. Access to

them can be done via the direct access to the time series’ entries or, alternatively, with a filtering

function (e.g. the mean value over given time intervals).

8.2.2.5 Rest Interface

To facilitate remote access to the resource graph, the OGEMA frameworks provides a REST

interface supporting RESTful communication using XML as well as JSON, and other

communication requirements according to RFC2616. Each request to the REST interface must

be https-encrypted and supply a username identifying the user (or application) whose

permissions will be used for the access, and the correct password for the user. Requests send

via REST are then performed with that user’s access rights.

Each OGEMA resource accessible to applications is also accessible via an URI given by

…/rest/resources/<path>, where “…” is the base URI of the OGEMA web server, and “<path>”

is a valid path to the resource. For schedule resources, up to two additional pseudo-paths /t1/t2

can be appended to the URL, which must be in the form of time stamps (in ms since epoch). If

the first extra path is given, all operations performed on the schedule exclude the entries before

t1. If the second pseudo-path is also used, schedule entries whose timestamp equals at least t2

are excluded, too. This way, sub-intervals of schedules can be selected and operated on.

The standard HTTP methods applied to these URIs can be used for interaction with the

resources. The GET request corresponds to reading a resource. It returns a textual representation

of the resource. For additional configuration of the representation, serialization options can be

encoded into the URL in the form “<URL>?<attribute1>=…&<attribute2>=… “ . Possible

attributes are depth (an integer defining the maximum parsing depth starting from the addressed

node), references (a true/false boolean defining whether references should be parsed as sub-

resources (true) or just as links) and schedules (boolean defining if schedules should be included

(true) or just linked-to). The default is “?depth=0&references=true&schedules=false“ .

Resources whose location is encountered a second time during the processing of a request can

be included as links, irrespective of the references settings. This terminates the processing of

possible loops in the resource graphs and avoids blowing up response messages to a request

with a large depth.

The PUT request can be sent to any resource URI and requires an attached textual resource

representation. If no resource exists at the URL, a 404 error is returned. PUT applies the

attached resource representation to the resource at the selected URL as if the message was

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 97 of 99

applied to the resource via the SerializationManager In case of schedules resources, the whole

schedule content is replaced with the contents of the message. If only a sub-interval of the

schedule was selected via pseudo-paths, the schedule entries outside the selected interval are

unaffected by the operation. As a result of the request, the equivalent of a GET on the same

URL after the request has been processed is returned.

POST with an attached resource is used to attach a new resource to the URL it is sent to.

Contrary to a PUT it can also be sent to …/rest/resources, in which case it creates a new top-

level resource. A 406 Error is returned if a top-level resource with the given name already

exists. If the request is sent to a resource location the processing of the event depends on

whether a sub-resource with the name as the resource in the message exists. If such a sub-

resource already exists, a PUT with the attached message is performed on this sub-resource

(which may cause an error if the resource types do not match). Otherwise the resource message

is attached to the OGEMA resource the request was sent to as a child node, either as an optional

field or as a decorator. Type and name of the new resource are inferred from the respective

entries in the message. If the message contains a valid xs:ResourceLink, a reference to this

resource is created. Sub-resources or decorators are created only if they are explicitly listed as

subresource in the XML message. If POST was successful, the result of a GET request on the

new resource’s URL is returned. Otherwise, an error is returned.

Sending a DELETE message to a resource URL attempts to remove the respective OGEMA

resource. It is equivalent to calling the delete() method on the resource. A successful delete

returns an empty document. An unsuccessful delete returns an HTTP error code.

Access to the log data of resources is available via …/rest/recordeddata/<path>, where again

<path> is the path of the resource to access. These URIs accept only the GET request and return

a time series (same as a schedule) of all the recorded data. The /t0/t1 pseudo-paths are available

for the GET request to only get the data points of a sub-interval.

8.2.2.6 Data Models

All resource types are Java interfaces extending org.ogema.model.Resource. The basic resource

types containing actual values are defined in the package org.ogema.model.simple; their

respective array resources are defined in package org.ogema.model.array. For the

representation of physical properties, specialized resource types exist for the most common

types of physical properties, which are defined in org.ogema.model.unit. On top of defining the

nature of the property represented by the resource, they also define the physical unit the property

is measured in.

The OGEMA API only defines the most basic resources. Complex resource types and rules

how to construct a resource graph using them are defined in the OGEMA data model.

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 98 of 99

9 References

1

 https://swagger.io/specification/#:~:text=Introduction,or%20through%20network%20traffic%20inspect

ion.
2 https://es2.slideshare.net/pjmolina/building-apis-with-the-openapi-spec
3

 https://learn.getgrav.org/16/advanced/yaml#:~:text=YAML%20stands%20for%20%22YAML%20Ain,

human %2Dreadable%20structured%20data%20format.
4 https://www.json.org/json-en.html
5 https://mind.indra.es/pages/viewpage.action?pageId=442704402
6 https://mind.indra.es/pages/viewpage.action?pageId=390696854
7 Semantic IoT Solutions – A Developer Perspective

(https://www.researchgate.net/publication/336679022)
8 SmartM2M; Guidelines for using semantic interoperability in industry (ETSI TR 103 535 v1.1.1 2019-

10)
9 IDS and the FAIR DATA PRINCIPLES- International Data Spaces Association
10 https://fiware-tutorials.readthedocs.io/en/latest/relationships-linked-data/
11 https://fiware-tutorials.readthedocs.io/en/latest/linked-data/
12 https://fusion.cs.uni-jena.de/fusion/blog/2016/11/18/iri-uri-url-urn-and-their-differences/
13 Knowledge represented using RDF semantic network in the concept of semantic web, Alena luckasoá,

Marked Vajgl, Martin Zácek, June 2016

 (https://www.researchgate.net/publication/303912673_Knowledge_represented_using_RDF_semantic_

 network_in_the_concept_of_semantic_web)
14 https://www.thinginthefuture.com/spip.php?article107#main_nav_fermer
15 https://www.w3.org/TR/rdf11-primer/
16 http://www.w3.org/TR/rdf11-new/
17 https://www.thinginthefuture.com/spip.php?article107#main_nav_fermer
18 https://www.w3.org/TR/json-ld/#relationship-to-rdf
19 https://www.w3.org/TR/json-ld11/
20 https://json-ld.org/spec/latest/json-ld/
21 https://www.w3.org/TR/json-ld/#interpreting-json-as-json-ld
22 https://json-ld.org/spec/latest/json-ld/#example-4-context-for-the-sample-document-in-the-previous-

section
23 https://www.w3.org/TR/rdf11-concepts/#dfn-generalized-rdf-dataset
24 http://travesia.mcu.es/portalnb/jspui/bitstream/10421/7478/1/JSON-LD_1_serialization.pdf
25 https://json-ld.org/spec/latest/json-ld/#serializing-deserializing-rdf
26 https://oascities.org/wp-

content/uploads/2018/06/8_Cantera_Standards_Context_Information_Management_

 IoTWeek2018.pdf
27 https://www.openmobilealliance.org/
28 https://fiware-datamodels.readthedocs.io/en/latest/ngsi-ld_howto/index.html
29 https://www.fiware.org/
30 https://www.etsi.org/
31 https://www.etsi.org/deliver/etsi_gs/CIM/001_099/006/01.01.01_60/gs_CIM006v010101p.pdf
32 https://h2020-demeter.eu/wp-content/uploads/2020/10/DEMETER_D21_final.pdf
33 Context Information Management (CIM); NGSI-LD API (ETSI GS CIM 009 v1.2.2 2020-02)
34 https://www.researchgate.net/publication/330927056_NGSI-

LD_API_for_Context_Information_Management
35 NGSI-LD API: for Context Information Management (ETSI White Paper No.31)
36 https://www.itu.int/en/ITU-T/Workshops-and-Seminars/201901/Documents/

 Seongmyung_Jeong_Presentation.pdf
37 https://es2.slideshare.net/flopezaguilar/data-modeling-with-ngsi-ngsild
38 https://www.w3.org/TR/rdf-schema/#bib-RDF11-CONCEPTS
39 https://github.com/FIWARE/context.Orion-LD/blob/develop/doc/manuals-ld/the-context.md
40 https://documenter.getpostman.com/view/513743/TVCb5B6F

https://www.itu.int/en/ITU-T/Workshops-and-Seminars/201901/Documents/
https://www.itu.int/en/ITU-T/Workshops-and-Seminars/201901/Documents/

D2.2 – Open API Specifications

PLATOON Contract No. GA 872592 Page 99 of 99

41 https://projects.tmforum.org/wiki/display/API/Open+API+Table
42 https://fiwaretmfbizecosystem.docs.apiary.io/#reference/asset-management-api/asset-info-

collection/update- product-catalog?console=1
43 https://github.com/FIWARE-TMForum/Business-API-Ecosystem
44 https://deep-hybrid-datacloud.eu/
45 https://fiware-tutorials.readthedocs.io/en/latest/iot-agent/index.html
46 https://iotagent-node-lib.readthedocs.io/en/latest/
47

 https://www.researchgate.net/publication/316060857_A_Microgrid_Testbed_for_Interdisciplinary_Res

earch_on_Cyber-Secure_Industrial_Control_in_Power_Systems
48 https://www.ogema.org/
49 https://www.ogema.org//wp-content/uploads/2014/12/OGEMA_2.0_introduction_v2.0.2.pdf

https://fiwaretmfbizecosystem.docs.apiary.io/#reference/asset-management-api/asset-info-collection/update-
https://fiwaretmfbizecosystem.docs.apiary.io/#reference/asset-management-api/asset-info-collection/update-
https://www.researchgate.net/publication/316060857_A_Microgrid_Testbed_for_Interdisciplinary_Research
https://www.researchgate.net/publication/316060857_A_Microgrid_Testbed_for_Interdisciplinary_Research
https://www.ogema.org/wp-content/uploads/2014/12/OGEMA_2.0_introduction_v2.0.2.pdf

