
D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 1 of 70

Grant Agreement N° 872592

Deliverable D3.5
Marketplace demonstrator and report

Contractual delivery date:
M24

Actual delivery date:
31st December 2021

Responsible partner:

P4: IAIS, Germany

Project Title PLATOON – Digital platform and analytic tools for energy
Deliverable number D3.5
Deliverable title Marketplace demonstrator and report
Author(s): Tasneem Tazeen Rashid (IAIS)

Tejas Morbagal Harish (IAIS)
Erik Maqueda (TECN)
Adelaida Lejarazu (TECN)

Responsible Partner: P4 – IAIS
Date: 31.12.2021
Nature R
Distribution level (CO, PU): PU
Work package number WP3 – Data Governance, Security and Privacy
Work package leader IAIS, Germany
Abstract: This deliverable demonstrates PLATOON Marketplace and

interactions among the Metadata Registry, the Connectors,

Ref. Ares(2021)8018882 - 31/12/2021

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 2 of 70

the Clearing House, the Vocabulary Provider components,
and the Marketplace User Interface.

Keyword List: Marketplace, Metadata Registry, User interface, Clearing
House, Vocabulary Provider, DAPS

The research leading to these results has received funding from the European Community's
Horizon 2020 Work Programme (H2020) under grant agreement no 872592.
This report reflects the views only of the authors and does not represent the opinion of the European
Commission, and the European Commission is not responsible or liable for any use that may be made
of the information contained therein.

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 3 of 70

Editor(s):
Tasneem Tazeen Rashid (IAIS)
Tejas Morbagal Harish (IAIS)
Najmeh Mousavi Nejad (IAIS)

Contributor(s): Erik Maqueda (TECN)
Adelaida Lejarazu (TECN)

Reviewer(s):
Martino Maggio (ENG)
Philippe Calvez (ENGIE)
Erik Maqueda (TECN)

Approved by:
Martino Maggio (ENG)
Philippe Calvez (ENGIE)
Erik Maqueda (TECN)

Recommended/mandatory
readers: WP2-WP6, WP8, WP9, Partners and Task Leaders

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 4 of 70

Document Description
Document Revision History

Version Date
Modifications Introduced
Modification Reason Modified by

0.1 02.11.2021 Creation of Table of Content Tasneem Tazeen Rashid (IAIS)

0.2 20.11.2021 Chapter 1 -4 and 6 Tasneem Tazeen Rashid (IAIS)
Tejas Morbagal Harish (IAIS)

0.3 28.11.2021 Chapter 5: Vocabulary Provider Erik Maqueda (TECN)

0.4 28.11.2021 Update Chapter 4: User Interface Tasneem Tazeen Rashid (IAIS)
Tejas Morbagal Harish (IAIS)

0.5 1.12.2021 Update Marketplace Architecture Erik Maqueda (TECN)
Tasneem Tazeen Rashid (IAIS)

0.6 13.12.2021 Adaptation of the internal review Tasneem Tazeen Rashid (IAIS)

0.7 21.12.2021 Adaptation of the review from Erik Tasneem Tazeen Rashid (IAIS)

0.8 30.12.2021 Final Review Erik Maqueda (TECN)
Philippe Calvez (ENGIE)

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 5 of 70

Table	of	Contents	

Table of Contents 5

 Terms and abbreviations 7

List of Figures 8

List of Tables 10

Executive Summary 11

1 Introduction 12

1.1 Marketplace Overview 12

1.2 Marketplace Architecture 13

1.3 Information Model and Marketplace 14

1.3.1 Metadata Representation in Marketplace 15

2 Metadata Registry 16

2.1 Interaction with Metadata Registry 17

2.1.1 Description Request 19

2.1.2 Register/Update Connector 21

2.1.3 Unregister Connector 23

2.1.4 Update Resource 25

2.1.5 Unregister Resource 27

2.1.6 Register App 28

2.1.7 Unregister App 31

2.1.8 Query 32

2.1.9 Rejection 33

2.1.10 REST Endpoints 33

2.2 Deployment of Metadata Registry 34

2.2.1 Prerequisites 34

2.2.2 Structure of Metadata Registry 34

2.2.3 Creation of SSL Certificates 34

2.2.4 Configuring the Docker-compose File 35

2.2.4.1 Download Docker Images 35

2.2.4.2 Run Application 35

2.2.4.3 Update 35

3 Clearing House 36

3.1 Interaction With Clearing House 36

3.1.1 Logging messages 36

3.1.2 Query all messages of a process 39

3.1.3 Query a particular messages of a process 41

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 6 of 70

3.2 Deployment 42

3.2.1 Prerequisites 42

3.2.2 Clearing House Core Configuration 42

3.2.3 Clearing House Service Configuration 44

4 Marketplace User Interface (UI) 46

4.1 Interaction with Marketplace UI 46

4.2 Deployment 47

4.2.1 Prerequisites 47

4.2.2 Configuration 47

4.2.3 Run Application 48

5 Vocabulary Provider 49

5.1 Interaction With Vocabulary Provider 55

5.1.1 DescriptionRequestMessage 56

5.1.2 DescriptionResponseMessage 56

5.1.3 QueryMessage 57

5.1.4 ConnectorUpdateMessage 59

5.1.5 ConnectorUnavailableMessage 60

5.2 Deployment of IDS Vocabulary Provider 60

5.2.1 Prerequisites 60

5.2.2 Structure of IDS Vocabulary Provider 60

5.2.3 Creation of SSL Certificates 61

5.2.4 Configuring the Docker-compose File 61

5.2.4.1 Run Application 61

5.2.4.2 Update 62

6 Conclusion 63

References 64

Appendix A: IDS Vocabulary Provider – IDS messages 64

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 7 of 70

Terms	and	abbreviations	

API Application Programming Interface
CO Confidential
DAPS Dynamic Attribute Provisioning Service
DAT Dynamic Attribute Token
DC Data Consumer
DER Distinguished Encoding Rules
DP Data Provider
GA Grant Agreement
GUI Graphical User Interface
HTTP HyperText Transfer Protocol
IDS International Data Spaces
IDSA International Data Spaces Association
JSON JavaScript Object Notation
JSON-LD JavaScript Object Notation for Linked Data
JWT JSON Web Token
OWL Web Ontology Language
PID Process ID
PU Public
RDF Resource Description Framework
RDFS Resource Description Framework Schema
REST REpresentational State Transfer
RSA Rivest-Shamir-Adleman encryption
SHACL Shapes Constraint Language
SSL Secure Sockets Layer
UI User Interface
URI Uniform Resource Identifier
URL Uniform Resource Locator
WP Work Package

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 8 of 70

List	of	Figures	

FIGURE 1: IDS ECOSYSTEM AND COMPONENTS [1] ... 12
FIGURE 2: MARKETPLACE ARCHITECTURE ... 13
FIGURE 3: REPRESENTATION OF THE INFORMATION MODEL [2] .. 14
FIGURE 4: IDS MESSAGE TAXONOMY [2] .. 17
FIGURE 5: HEADER OF HTTP API REQUEST .. 17
FIGURE 6: SAMPLE DESCRIPTION REQUEST MESSAGE OF METADATA REGISTRY 19
FIGURE 7: SAMPLE RESPONSE MESSAGE OF SELF-DESCRIPTION OF THE METADATA REGISTRY . 20
FIGURE 8: SAMPLE OF CONNECTOR REGISTRATION/UPDATE MESSAGE 21
FIGURE 9: SAMPLE RESPONSE OF CONNECTOR REGISTRATION/UPDATE MESSAGE 22
FIGURE 10: SAMPLE OF CONNECTOR UNREGISTER MESSAGE .. 23
FIGURE 11: SAMPLE RESPONSE OF CONNECTOR UNREGISTER MESSAGE 24
FIGURE 12: SAMPLE OF THE RESOURCE UPDATE MESSAGE .. 25
FIGURE 13: SAMPLE RESPONSE OF RESOURCE UPDATE MESSAGE .. 26
FIGURE 14: SAMPLE OF RESOURCE UNREGISTRATION MESSAGE .. 27
FIGURE 15: SAMPLE RESPONSE OF RESOURCE UNREGISTRATION MESSAGE 28
FIGURE 16: SAMPLE OF APP REGISTRATION MESSAGE ... 28
FIGURE 17: SAMPLE RESPONSE OF APP REGISTRATION MESSAGE .. 29
FIGURE 18: SAMPLE OF APP UNREGISTRATION MESSAGE .. 31
FIGURE 19: SAMPLE RESPONSE OF APP UNREGISTRATION MESSAGE ... 31
FIGURE 20: SAMPLE SPARQL QUERY .. 32
FIGURE 21: SAMPLE RESPONSE OF THE SPARQL QUERY ... 32
FIGURE 22: SAMPLE REJECTION MESSAGE ... 33
FIGURE 23: REQUEST METHOD OF LOGGING MESSAGE IN THE CLEARING HOUSE 37
FIGURE 24: SAMPLE DECODED RESPONSE FROM LOG MESSAGE IN THE CLEARING HOUSE 38
FIGURE 25: REQUEST METHOD OF QUERYING ALL MESSAGES OF A PROCESS IN THE CLEARING

HOUSE ... 39
FIGURE 26: SAMPLE RESPONSE MESSAGE OF QUERYING ALL THE MESSAGES UNDER A PID IN THE

CLEARING HOUSE .. 41
FIGURE 27: REQUEST METHOD OF QUERYING A MESSAGE OF A PROCESS IN THE CLEARING HOUSE

 .. 42
FIGURE 28: DASHBOARD OF THE UI .. 46
FIGURE 29: LIST OF CONNECTORS IN THE UI .. 47
FIGURE 30: LIST OF RESOURCES IN THE UI ... 47
FIGURE 31: LIST OF THE APPS(METADATA) IN THE UI ... 47
FIGURE 32: IDS VOCABULARY HIGH-LEVEL ARCHITECTURE ACCORDING TO IDS REFERENCE

ARCHITECTURE .. 49
FIGURE 33:PLATOON IDS VOCABULARY PROVIDER - HOME SCREEN - SELECT AN ONTOLOGY

 .. 50
FIGURE 34: PLATOON IDS VOCABULARY PROVIDER - HOME SCREEN – SEARCH FOR A TERM

 .. 51
FIGURE 35: PLATOON IDS VOCABULARY PROVIDER - DOCUMENTATION - SEARCH FOR

CLASSES AND PROPERTIES ... 51
FIGURE 36: PLATOON IDS VOCABULARY PROVIDER - DOCUMENTATION - SEARCH FOR A TERM

 .. 52
FIGURE 37: PLATOON IDS VOCABULARY PROVIDER - DOCUMENTATION - DIFFERENT WAYS TO

SHOW DETAILED INFORMATION .. 52
FIGURE 38: PLATOON IDS VOCABULARY PROVIDER – VISUALISATION – NETWORK DIAGRAM

 .. 53

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 9 of 70

FIGURE 39: PLATOON IDS VOCABULARY PROVIDER – VISUALISATION - DETAILED
INFORMATION OF TERMS .. 53

FIGURE 40: PLATOON IDS VOCABULARY PROVIDER – VISUALISATION - ADDITIONAL
SEARCHING AND FILTERING FUNCTIONALITIES ... 54

FIGURE 41: PLATOON IDS VOCABULARY PROVIDER – QUERYING - SPARQL QUERY
EXECUTION .. 54

FIGURE 42: PLATOON IDS VOCABULARY PROVIDER – QUERYING - SPARQL QUERY RESULT
 .. 55

FIGURE 43: PLATOON IDS VOCABULARY PROVIDER – CONFIGURATION – UPLOAD NEW
ONTOLOGIES .. 55

FIGURE 44: PLATOON IDS VOCABULARY PROVIDER - IDS MESSAGES - DESCRIPTION REQUEST
MESSAGE ... 56

FIGURE 45: PLATOON IDS VOCABULARY PROVIDER - IDS MESSAGES - DESCRIPTION
RESPONSE MESSAGE .. 57

FIGURE 46: PLATOON IDS VOCABULARY PROVIDER - IDS MESSAGES - QUERY MESSAGE .. 57
FIGURE 47: PLATOON IDS VOCABULARY PROVIDER - IDS MESSAGES - QUERY MESSAGE -

HEADER FIELDS- ONTOLOGYNAME ... 58
FIGURE 48: PLATOON IDS VOCABULARY PROVIDER - IDS MESSAGES - QUERY MESSAGE -

HEADER FIELDS- ONTOLOGYNAME - THE RESULT ... 58
FIGURE 49: PLATOON IDS VOCABULARY PROVIDER - IDS MESSAGES - QUERY MESSAGE -

HEADER FIELDS- SEARCHTERM ... 59
FIGURE 50: PLATOON IDS VOCABULARY PROVIDER - IDS MESSAGES -

CONNECTORUPDATEMESSAGE .. 59
FIGURE 51: PLATOON IDS VOCABULARY PROVIDER - IDS MESSAGES -

CONNECTORUNAVAILABLEMESSAGE .. 60
FIGURE 52: IDS VOCABULARY PROVIDER - SUCCESSFULLY STARTED TEST 62

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 10 of 70

List	of	Tables	

TABLE 1: RESPONSE CODES OF IDS MESSAGES ... 17

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 11 of 70

Executive	Summary	

This document provides technical information about the PLATOON Marketplace Components
(Deliverable 3.5). The PLATOON Marketplace is a place to search and discover data assets and
services. The Provider publishes the metadata about the data assets and tools it is interested in
offering in PLATOON Metadata Registry. The publishing of metadata happens through the
PLATOON Connector. PLATOON Marketplace will offer a User Interface where all the
metadata will be visualized in a user-friendly manner. By browsing through the User Interface,
one can become interested in acquiring the data assets or services and starting a transaction
process by establishing a Contract Agreement. PLATOON Clearing House mediates between
the Provider and Consumer by ensuring the contractual obligations are met. PLATOON
Vocabulary Provider helps to annotate and describe the datasets in the Marketplace, enhancing
the interoperability. This document includes architectural and functional information about
Metadata Registry, Clearing House, Marketplace User Interface, and Vocabulary Provider.

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 12 of 70

1 Introduction	

This deliverable reports the design of the marketplace module that implements a common
endpoint to access the data and energy services based on the International Data Spaces reference
architecture. The core purpose of the International Data Spaces is to enable controlled exchange
and sharing of data between organizations – regardless of the type of data. In many use cases
of the International Data Spaces, this is some form of structured data (e.g., measurement data,
product data, or logistics data). Also, other types of (streaming) data are supported. The IDS
Connector allows data owners and data providers to exchange and share their data with other
participants in the IDS ecosystem, as shown in Figure 1, while data sovereignty is ensured at
any time. For PLATOON, the Broker and AppStore are merged into one component called the
Metadata Registry that contains the metadata for both datasets and apps/data analytics tools.
The developed metadata registry supports both approaches IDS Apps (that are implemented
directly into the IDS connectors) and the PLATOON Data Analytics defined in WP4 (that can
be implemented on-premise or as a service). In addition, as part of this task, a Vocabulary
Provider has been developed which manages the PLATOON Common Data Models and other
standard ontologies to enable to understand the datasets/apps metadata. The rest of the
components from the IDS ecosystem shown in Figure 1 have been implemented in PLATOON.
in particular an Identity Provider and a Clearing House developed by Fraunhofer AISEC.

Figure 1: IDS Ecosystem and components [1]

1.1 Marketplace	Overview	
The Marketplace is one common endpoint to access the data and energy services provided by a
Marketplace participant to set the foundations for a functional Energy data Marketplace, open
to all relevant stakeholders. This output layer of PLATOON allows the data flow to the
stakeholders, offering different services to the rest of the community: data services (share of
raw and process data) and energy services (energy-specific data analytics tools). The
Marketplace is compliant with the specification defined by the IDS reference architecture. It
will provide functionalities required by each use case based on their specific requirement.

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 13 of 70

Marketplace offers the opportunity to explore data exchange for innovative use-cases without
exposing providers to risks of unauthorized data access.

PLATOON Marketplace comprehends the following IDS components:

• Metadata Registry: The Metadata Registry will receive and store metadata describing
data assets (datasets or services) made available by providers.

• User Interface: The User Interface will visualize the metadata registered in the
Metadata Registry user-friendly.

• Clearing House: The Clearing House mediates between the Data Provider and Data
Consumer by logging the transactions structured into processes to ensure the contractual
obligation are preserved by both parties.

• Vocabulary Provider: The Vocabulary Provider manages and offers vocabularies
(ontologies, reference data models, metadata elements) that can be used to annotate and
describe datasets and apps/services. In other words, it provides domain-specific
vocabularies and the IDS Information Model1.

• DAPS: Dynamic Attribute Provisioning Service (DAPS) in a given IDS ecosystem
enables the enrichment of organizations' identities and Connectors with additional
attributes. In Marketplace, all other components must incorporate DAPS2. DAPS issues
Dynamic Attribute Token (DAT) to complete the verification process during
communication among IDS components.

1.2 Marketplace	Architecture	

Figure 2: Marketplace Architecture

Figure 2 shows the architecture of the Marketplace. Presume, Company A has acquired some
rare datasets and used them to invent a new technology to store electricity efficiently. Now,
Company A wants to monetize the datasets with other companies without losing control over

1 https://github.com/International-Data-Spaces-Association/InformationModel
2 https://daps.aisec.fraunhofer.de/v2/token

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 14 of 70

the data. Company A will have to craft the metadata to represent the datasets as a Resource.
Company A should first install a Connector on their IT environment and then register their
Connector to the Metadata Registry. This registration includes information like who owns the
Resource, where to download it, which contracts apply etc. User Interface (UI) reflects this
information in a user-friendly manner. Now Company B, who already has registered their
Connector to the Metadata Registry, browses through the UI and decides to acquire the dataset
from Company A. In this scenario, Company A becomes Data Provider, and Company B
becomes the Data Consumer in Figure 2. The negotiations between the two parties will be
directly between the respective Connectors of Company A and Company B. Both parties log
their settled Contract Agreement to the Clearing House during the data exchange process
between the Data Provider and Data Connector. Vocabulary Provider is a special connector that
exchanges metadata instead of exchanging data. So it will register itself in the Metadata
Registry. Company A and Company B can send SPARQL queries from their connectors to
Vocabulary Provider through IDS messages and can use the Vocabulary Provider to annotate
and understand the corresponding data assets (datasets/services).

1.3 Information	Model	and	Marketplace	
The Information Model3, an RDFS/OWL-ontology, is an essential agreement shared by the
participants and components of the IDS, facilitating compatibility and interoperability. The
primary purpose of this formal model is to enable (semi-)automated exchange of digital
resources within a trusted ecosystem of distributed parties while preserving the data sovereignty
of Data Owners. The Information Model, therefore, supports the description, publication, and
identification of data products and reusable data processing software (both referred to
hereinafter as "Digital Resources," or simply "Resources") in the PLATOON Marketplace.
Once the relevant Resources are identified, they can be exchanged and consumed via
semantically annotated, easily discoverable services. Apart from those core commodities, the
Information Model describes essential constituents of the International Data Spaces, inevitably
PLATOON Marketplace, its participants, its infrastructure components, and its processes. The
ontology and its documentation are published at https://w3id.org/idsa/core.

Figure 3: Representation of the Information Model [2]

All the IDS components need to follow this Information Model for IDS messaging and
communication. Participants of the IDS use the RDF vocabulary provided by the Information
Model as their common language within the IDS. To ensure the correct usage and understanding

3 https://github.com/International-Data-Spaces-Association/InformationModel

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 15 of 70

of the vocabulary, validation structures are provided in the W3C Shapes Constraint Language
(SHACL). These so-called SHACL shape graphs can be used to validate self-generated RDF
statements against the Information Model and check if:

• a Connector's self-description is valid;
• a Resource is described using the correct metadata terms;
• an HTTP multipart message exchanged between IDS components provides the

necessary information.

The SHACL shapes can be found in the testing subdirectory of the IDS Information Model4.

1.3.1 Metadata	Representation	in	Marketplace	
In the use-case scenario described in Section 1.2, the Data Provider or Company A needs to
design the Resource to represent their metadata in the Marketplace. The scope of Resources is
defined in the Resource class5 in the information model, and the Resource Shape class6
maintains the SHACL validation. This Resource can be extended by adding more properties
depending on the nature of the data. For example, adding title, language, the publication date
of the metadata. The Data Provider must look at the file, provided here7, that describes the Json
terms to RDF terms of the IDS information model while creating the Resource. To get a more
general idea of the horizons of creating Resources, we recommend checking these examples8910.
An example Resource will be described in Section 2.1. The metadata represented in the
Marketplace will be in line with the metadata defined in tasks T2.4 and T5.3.

	 	

4 https://github.com/International-Data-Spaces-Association/InformationModel/tree/develop/testing
5 https://github.com/International-Data-Spaces-
Association/InformationModel/blob/develop/model/content/Resource.ttl
6 https://github.com/International-Data-Spaces-
Association/InformationModel/blob/develop/testing/taxonomies/ResourceShape.ttl
7 https://github.com/PLATOONProject/Metadata-Registry/blob/main/broker-
core/src/main/resources/context.json
8 https://github.com/International-Data-Spaces-Association/InformationModel/tree/develop/examples
9 https://github.com/International-Data-Spaces-
Association/InformationModel/blob/a611f476a9b68d0a7cd5f9e28fac38c413f13749/examples/TEXT_RESOUR
CE.jsonld
10 https://github.com/International-Data-Spaces-
Association/InformationModel/blob/a611f476a9b68d0a7cd5f9e28fac38c413f13749/examples/TEXT_RESOUR
CE.ttl

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 16 of 70

2 Metadata	Registry	

The Metadata Registry is a registry for datasets and apps/data analytics tools derived from the
International Data Spaces (IDS) Metadata Broker. In contrast to the general IDS Metadata
Broker, the Metadata Registry has been tailored to provide the main functionalities of metadata
handling for Connectors, Data Resources, Apps, and querying for the metadata. This
PLATOON component has adapted the functionality to store metadata of the App hosted IDS
App Store. Combining the functionalities is that there are challenges regarding transferring a
complex App to the App Store or exchanging Apps using Connector. Thus, only metadata of
the App is registered in the Metadata Registry. The important point is that the Broker does not
serve the datasets themselves: querying is performed on metadata only. The feature for handling
App messages sent by the Connectors is added to the previous version of the Broker11 (which
was explained in Deliverable D3.3) to make it a Metadata Registry. The metadata of the
Connectors, Data Resources, and App Resources are stored in an RDF Database as triples.

The Metadata Registry is the main component of Marketplace. It can be used to register, update,
or unregister the Connector or resource (Resource or AppResource) metadata. Self-description
of the Metadata Registry is also available in the Marketplace, and one can query for any
information provided in it. The following list shows the main functions of the Metadata
Registry:

• Description Request: Gets the self-description of the Metadata Registry.
• Register/Update Connector: Registers the Connector if it doesn't exist in the Metadata

Registry or update the Connector if it exists. Users can also include Resources (metadata
of the data) while registering a Connector.

• Unregister Connector: Unregisters the Connector from the Metadata Registry.
• Update Resource: Updates the information of a particular Resource of a Connector.
• Unregister Resource: Removes a particular Resource from a Connector.
• Register App: Registers metadata of an App in the Resource Catalog of the Connector.
• Unregister App: Unregisters metadata of an App from the Resource Catalog of the

Connector.
• Query: Queries the SPARQL triples in Fuseki triple store.

Note that all data in the Metadata Registry is metadata only. The register, update and unregister
of connectors, Resource, and AppResource mentioned above are also related to metadata.

11 https://github.com/PLATOONProject/open-source-broker

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 17 of 70

2.1 Interaction	with	Metadata	Registry	

Figure 4: IDS Message taxonomy [2]

The Metadata Registry accepts and sends messages according to the IDS Information Model
explained in Section 1.3. These messages are called IDS messages, and Figure 4 illustrates an
excerpt of the message taxonomy. Request-response interactions between Marketplace
components are reflected by the dedicated subclass of the RequestMessage and the
RequestResponse type. The NotificationMessage subclasses reflect Event-like notifications.
All messages in the Metadata Registry are JSON-LD formatted as HTTP Multipart messages.
Table 1 enlists the possible response codes of the IDS messages. The multipart endpoint of
Metadata Registry is "/infrastructure". If the Metadata Registry is running, an HTTP POST
request can be sent to interact with it. The header should be "Content-Type," and the value
should be "multipart/mixed; boundary=msgpart" as shown in Figure 5. Here the boundary value
can be changed to any value, but it must be the same boundary in the request body.

Figure 5: Header of HTTP API request

The endpoint for the Fuseki server of the Metadata Registry is "/fuseki". This endpoint is
important for the connection setup of the UI with the Metadata Registry described in Section
4.2.

In the use-case scenario mentioned in Section 1.2, Company A and Company B will use their
corresponding Connectors to interact with the Metadata Registry. Subsections of Section 2.1
will show how to interact with the Metadata Registry, and they will cover all main
functionalities provided by it. Note that the localhost environment acts as the IDS connector to
interact with the Metadata Registry.

Table 1: Response codes of IDS messages

Status Meaning Description Schema
200 OK Successful

Operation
ResultMessage

201 CREATED Created MessageProcessedNotificationMessage
400 Bad Request Bad Request RejectionMessage

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 18 of 70

401 Unauthorized Unauthorized RejectionMessage
405 Method Not Allowed Method Not

Allowed
RejectionMessage

500 Internal Server Error Internal Error RejectionMessage

The Postman12 tool is used to test these interactions with the Metadata Registry. The Postman
collections provided here13 can be imported to the tool. As mentioned earlier, it is a must to
incorporate DAPS in each of the components; for successful communication with the Metadata
Registry, a proper DAT is a must to include in the API requests. The following sections contain
sample snippets of all the requests and their corresponding responses14.

12 https://www.postman.com/
13 https://www.getpostman.com/collections/597f48eb7bfca0604623
14 Please import the Postman collection to test the APIs by yourself

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 19 of 70

2.1.1 Description	Request	
The multipart message header should be DescriptionRequestMessage, and the payload should
be empty.

Figure 6: Sample description request message of Metadata Registry

The response should be a DescriptionResponseMessage with the self-description of the
Metadata Registry in the payload, as shown in Figure 7.

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 20 of 70

Figure 7: Sample response message of self-description of the Metadata Registry

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 21 of 70

2.1.2 Register/Update	Connector	
The multipart message header should be ConnectorUpdateMessage, and the payload should be
JSON-LD format connector metadata, as shown in Figure 8.

Figure 8: Sample of connector registration/update message

The response should be a MessageProcessedNotificationMessage without payload, as shown in
Figure 9.

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 22 of 70

Figure 9: Sample response of Connector registration/update message

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 23 of 70

2.1.3 Unregister	Connector	

The multipart message header should be ConnectorUnavailableMessage, and the payload
should be empty, as shown in Figure 10.

Figure 10: Sample of Connector unregister message

The response should be a MessageProcessedNotificationMessage without payload, as shown in
Figure 11.

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 24 of 70

Figure 11: Sample response of Connector unregister message

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 25 of 70

2.1.4 Update	Resource	
The multipart message header should be ResourceUpdateMessage, and the payload should be
JSON-LD format resource metadata, as shown in Figure 12.

Figure 12: Sample of the resource update message

The response should be a MessageProcessedNotificationMessage without payload, as shown in
Figure 13.

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 26 of 70

Figure 13: Sample response of Resource update message

Below is an example of a self-description of a Resource in JSON-LD format.
{
 "@context" : {
 "ids" : "https://w3id.org/idsa/core/",
 "idsc" : "https://w3id.org/idsa/code/"
 },
 "@type" : "ids:Resource",
 "@id" : "https://w3id.org/idsa/autogen/resource/2857062a-0024-497f-88f6-23f4f4edadf5",
 "ids:language" : [{
 "@id" : "idsc:DE"
 }, {
 "@id" : "idsc:EN"
 }],
 "ids:version" : "1.2",
 "ids:contentType" : {
 "@id" : "idsc:SCHEMA_DEFINITION"
 },
 "ids:description" : [{
 "@value" : "Multiple numbers of resources could be offered by the connectors",
 "@type" : "http://www.w3.org/2001/XMLSchema#string"
 }, {
 "@value" : "provide more description of this resource",
 "@type" : "http://www.w3.org/2001/XMLSchema#string"
 }],
 "ids:keyword" : [{
 "@value" : "broker",
 "@type" : "http://www.w3.org/2001/XMLSchema#string"
 }, {
 "@value" : "metadata",
 "@type" : "http://www.w3.org/2001/XMLSchema#string"
 }],
 "ids:title" : [{
 "@value" : "Title of another resource offered by the Connector",
 "@type" : "http://www.w3.org/2001/XMLSchema#string"
 }, {
 "@value" : "Extending title",
 "@type" : "http://www.w3.org/2001/XMLSchema#string"
 }]

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 27 of 70

}

2.1.5 Unregister	Resource		
The multipart message header should be ResourceUnavailableMessage, and the payload should
be empty, as shown in Figure 14.

Figure 14: Sample of resource unregistration message

The response should be a MessageProcessedNotificationMessage without payload, as shown in
Figure 15.

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 28 of 70

Figure 15: Sample response of Resource unregistration message

2.1.6 Register	App		
Participants need to register a Connector before registering an App. The App will be there in
the resource catalog of the Connector. The multipart message header should be
AppAvailableMessage, and the payload should be JSON-LD format AppResource metadata, as
shown in Figure 16.

Figure 16: Sample of App registration message

The response should be a MessageProcessedNotificationMessage without payload, as shown in
Figure 17.

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 29 of 70

Figure 17: Sample response of App registration message

Below is the example of a self-description of an AppResource in JSON-LD format.

{
“@context” : {
“ids” : “https://w3id.org/idsa/core/”,
“idsc” : “https://w3id.org/idsa/code/”
 },
“@type” : “ids:AppResource”,
“@id” : “https://example.org/app2”,
“ids:language” : [{
“@id” : “idsc:DE”
 }, {
"@id ": "idsc:EN "
 }],
„ids:version“ : „1.2“,
„ids:contentType“ : {
„@id“ : „idsc:SCHEMA_DEFINITION“
 },
“ids:description” : [{
"@value": "Multiple numbers of resources could be offered by the connectors",
"@type": "http://www.w3.org/2001/XMLSchema#string"
 }, {
"@value": "provide more description of this resource",
"@type": "http://www.w3.org/2001/XMLSchema#string"
 }],
“ids:keyword” : [{
“@value” : “broker”,
“@type” : “http://www.w3.org/2001/XMLSchema#string”
 }, {
“@value” : “metadata”,
“@type” : “http://www.w3.org/2001/XMLSchema#string”
 }],
“ids:title” : [{
"@value": "Title of another resource offered by the Connector",
"@type": "http://www.w3.org/2001/XMLSchema#string"
 }, {
"@value": "Extending title",
"@type": "http://www.w3.org/2001/XMLSchema#string"
 }],
“ids:representation” : [{
“@type” : “ids:AppRepresentation” ,
“ids:mediaType” : { “@id” : “https://www.iana.org/assignments/media-types/application/zip” },
“ids:dataAppDistributionService” : { “@id” : “https://example.com” },
“ids:dataAppRuntimeEnvironment” : “Docker” ,
“ids:dataAppInformation” : {
“@type” : “ids:SmartDataApp” ,
“ids:appDocumentation” : “App-related human-readable documentation.” ,

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 30 of 70

“ids:appEnvironmentVariables” : “$Env1 = environment variable 1, $Env2 = environment variable
2” ,
“ids:appStorageConfiguration” : “1 Docker volume required, e.g., -v /data” ,
“ids:appEndpoint” : {
“@type” : “ids:AppEndpoint” ,
“ids:appEndpointInformation” : “I am an app endpoint. I do endpoint things.",
“ids:appEndpointDocumentation” : { “@id” : “https://app.swaggerhub.com/apis/app/1337” },
“ids:appEndpointType” : “idsc:INPUT_ENDPOINT” ,
“ids:appEndPointPort” : 5000 ,
“ids:path” : “/input” ,
“ids:appEndpointMediaType” : { “@id” : “https://www.iana.org/assignments/media-
types/application/json” },
“ids:appEndpointProtocol” : “HTTP/1.1”
 }
 }
 }]
}

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 31 of 70

2.1.7 Unregister	App		
The multipart message header should be AppUnavailableMessage, and the payload should be
empty, as shown in Figure 18.

Figure 18: Sample of App unregistration message

The response should be a MessageProcessedNotificationMessage without payload, as shown in
Figure 19.

Figure 19: Sample response of App unregistration message

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 32 of 70

2.1.8 Query		
The multipart message header should be QueryMessage, and the payload should be a SPARQL
query.

Figure 20: Sample SPARQL query

The Response should be a ResultMessage, and the payload should be the result of the SPARQL
query, as shown in Figure 21.

Figure 21: Sample response of the SPARQL Query

 	

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 33 of 70

2.1.9 Rejection	
Rejection messages are specialized response messages that notify the sender of a message (i.e.,
The connectors) that the processing of this message has failed. Table 1 shows the list of possible
Rejection message codes.
Below is the example of a rejection message which says, "Error processing the token". This
indicates that the DAT token used to send the request message to the Metadata Registry is
invalid.

Figure 22: Sample rejection message

2.1.10 REST	Endpoints	
The Metadata Registry facilitates optional REST endpoints also. The change in these Endpoints
is that we put the mandatory fields of the multipart header to the header of the REST request.
These mandatory fields include ids-securityToken, ids-senderAgent, ids-modelVersion, ids-
issued, ids-issuerConnector, etc., and keep the body of the multipart request in the body of the
REST request.

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 34 of 70

2.2 Deployment	of	Metadata	Registry	
The code of the Open-source Metadata Registry is hosted in the PLATOON Git repository:
https://github.com/PLATOONProject/Metadata-Registry
The development environment of Open-source Broker consists of two main components:

• Fuseki triple store: The database storing all the metadata
• Metadata Registry: The core component

2.2.1 Prerequisites	
Prerequisite to run the Metadata Registry:

• Docker
• Docker Compose
• Java
• Maven
• OpenSSL

2.2.2 Structure	of	Metadata	Registry	
Docker images are created for each Metadata Registry component and run the corresponding
docker containers in the same docker-compose environment so that each component can
communicate internally.
The Metadata Registry consists of three components:

• broker-core: The broker-core component is the main component of the Metadata
Registry, a Java environment running the Maven package of our code. The broker-core
component will take requests from broker-reverseporxy, handle requests using the same
handlers we mentioned in Section 2.1, and use APIs that broker-fuseki provides to either
read or write in the Fuseki triple store.

• broker-fuseki: The broker-fuseki component is an instance of the Fuseki triple store,
which hosts all metadata of the Metadata Registry.

• broker-reverseproxy: The broker-reverseproxy is an NGINX reverse proxy instance,
which hosts the certificate to provide a secure connection to the Metadata Registry. It
also acts as the gateway to redirect requests to the broker-core component.

2.2.3 Creation	of	SSL	Certificates	
A valid X.509 certificate, signed by a trusted certification authority, is strongly recommended
to avoid warnings about insecure HTTPS connections. The certificate needs to be of .crt format
and must have the name server.crt. In case your certificate is of .pem format, it can be converted
with the following commands, which require OpenSSL to be installed:

OpenSSL x509 -in mycert.pem -out server.crt
OpenSSL RSA -in mycert.pem -out server.key
mkdir cert
mv server.crt cert/
mv server.key cert/

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 35 of 70

2.2.4 Configuring	the	Docker-compose	File	
The docker-compose file is located in path docker/composefiles/broker-localhost. The most
crucial part of adapting the configuration is to provide the correct location of the X.509
certificate in the broker-reverseproxy service. Assuming the location of the certificate is
"/home/ids/cert," the corresponding configuration is:

services:
broker-reverseproxy:
image: registry.gitlab.cc-asp.fraunhofer.de/eis-ids/broker-open/reverseproxy
volumes:
- /home/ids/cert:/etc/cert/
[…]

2.2.4.1 Download Docker Images

All of the Metadata Registry docker images are currently hosted at the GitLab of Fraunhofer
IAIS. No credentials are needed to download the images. The following command is for pulling
all docker images (in path docker/composefiles/broker-localhost):

docker-compose pull
Note that the docker images will be hosted in a PLATOON image registry in the future and
how to download the image may change afterward.

2.2.4.2 Run Application

To start up the Metadata Registry, run the following command inside the directory of the
docker-compose.yml file (in path docker/composefiles/broker-localhost):

docker-compose up -d
This process can take several minutes to complete. You can test whether the Broker has
successfully started by opening https://localhost. The result should be a JSON document,
providing general metadata about the Metadata Registry.

2.2.4.3 Update

To update an existing installation of Metadata Registry, first, repeat the steps explained in
Section 2.2.4.1. Containers can be either hot updated or restarted to apply the changes. To hot
update a container, run the following command:

docker-compose up -d—no-deps—build <container name>

Alternatively, one can restart the entire service by running:

docker-compose down
docker-compose up –d

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 36 of 70

3 Clearing	House	

The Clearing House [3] acts as an intermediary in the IDS ecosystem as well as PLATOON
Marketplace. This means that the Clearing House mediates between a Data Provider (DP) and
a Data Consumer (DC), ensuring both parties meet their contractual obligations. Such as:

• The DP sharing data with the DC according to Usage Contracts and Data Usage Policies
defined

• The DC using data according to Usage Contracts and Data Usage Policies defined and
effecting payment to the DP as agreed.

For each data exchange transaction, the DP attaches metadata to the data requested by the DC,
specifying data usage restrictions, pricing information, payment entitlement, time of validity,
etc. This way, the DP can establish a Data Usage Policy as deemed appropriate, ensuring data
sovereignty is guaranteed. The Clearing House in the Marketplace reduces risk and uncertainty
on both sides as it is a trusted partner of both the DP and the DC. Since they don't know each
other and/or haven't done data exchange transactions so far, the DP and DC may not trust each
other in many cases. For example, if the DP agrees to provide data to the DC based on a Usage
Contract, no one can verify the transaction. One party could not fulfill the contract, for example,
by not delivering the data as agreed or providing data of poor quality on the DP side, or by
misusing the data or failing with payment on the DC side. Such transactional risk can be
mitigated by involving the Clearing House. There are two functionalities of the Clearing House:

• Log Message: Each party in a data exchange process logs their contractual obligation
to the Clearing House. These logs are structured as Processes and have a Process ID.

• Query Message: Each party can query the Clearing House to ensure the contractual
obligation is preserved.

The Clearing House is developed by Fraunhofer AISEC and in PLATOON, it is hosted as
provided.

3.1 Interaction	With	Clearing	House	
The IDS Clearing House structures its logs into processes and requires that all messages are
logged under a process ID. Processes are meant to represent agreed-upon data exchanges that
include the storage of the contract agreement and all messages that document the data exchange.
Any IDS connector can create processes with a valid DAT issued by DAPS, who becomes the
owner of the process. Only the owner of the process may read or write data in the process. All
the possible response statuses of codes are provided in Table 1.

3.1.1 Logging	messages		
The information that should be logged in the Clearing House (logData) is sent in the payload
of a LogMessage, as shown in Figure 23. The log entry stored in the Clearing House consists
of the payload and meta-data from the LogMessage and stored under the given PID. This IDS
message returns the newly created ID of the log entry together with status information.

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 37 of 70

Figure 23: Request method of logging message in the Clearing House

The communication between an IDS connector and the Clearing House can be described on the
application level with the flow of Infomodel messages between both entities. The IDS connector
sends a LogMessage to the Clearing House to log information in the Clearing House, as
provided below:

POST /logs/messages/test-process HTTP/1.1
Host: ch-ids.aisec.fraunhofer.de
Content-Type: multipart/form-data; boundary=X-TEST-REQUEST-BOUNDARY
Accept: */*

--X-TEST-REQUEST-BOUNDARY
Content-Disposition: form-data; name="header"
Content-Type: application/json
{
 "@context" : {
 "ids" : "https://w3id.org/idsa/core/",
 "idsc" : "https://w3id.org/idsa/code/"
 },
 "@type" : "ids:LogMessage",
 "@id" : "https://w3id.org/idsa/autogen/logMessage/c6c15a90-7799-4aa1-ac21-9323b87a7xv9",
 "ids:securityToken" : {
 "@type" : "ids:DynamicAttributeToken",
 "@id" : "https://w3id.org/idsa/autogen/dynamicAttributeToken/6378asd9-480d-80df-
c5cb02e4e260",
 "ids:tokenFormat" : {
 "@id" : "idsc:JWT"
 },
 "ids:tokenValue" : "eyJ0eXAiOiJKV1QiLCJraWQiOiJkZWZhdWx0IiwiYWxnIjoi....."
 },
 "ids:senderAgent" : "http://example.org",
 "ids:modelVersion" : "4.0.0",
 "ids:issued" : {
 "@value" : "2020-12-14T08:57:57.057+01:00",
 "@type" : "http://www.w3.org/2001/XMLSchema#dateTimeStamp"
 },
 "ids:issuerConnector" : {
 "@id" : "https://companyA.com/connector/59a68243-dd96-4c8d-88a9-0f0e03e13b1b"
 }
}
--X-TEST-REQUEST-BOUNDARY
Content-Disposition: form-data; name="payload"
Content-Type: application/json
{
 "@context" : "https://w3id.org/idsa/contexts/context.jsonld",
 "@type" : "ids:ConnectorUpdateMessage",
 "id" : "http://industrialdataspace.org/connectorAvailableMessage/34d761cf-5ca4-4a77-a7f4-
b14d8f75636a",
 "issued" : "2019-12-02T08:25:08.245Z",
 "modelVersion" : "4.0.0",

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 38 of 70

 "issuerConnector" : "https://companyA.com/connector/59a68243-dd96-4c8d-88a9-0f0e03e13b1b",
 "securityToken" : {
 "@type" : "ids:DynamicAttributeToken",
 "tokenFormat" : "https://w3id.org/idsa/code/tokenformat/JWT",
 "tokenValue" : "eyJhbGciOiJSUzI1NiIsInR5cCI..."
}

--X-TEST-REQUEST-BOUNDARY--

The response comes in a JWT format containing both data and metadata stored so that the
recipient can easily verify that the signature on the JWT is veiled. The decode version of the
JWT is shown in Figure 24. This indicates that the data with the given metadata was indeed
logged in the Clearing House.

Figure 24: Sample decoded response from Log Message in the Clearing House

The document_id represents the log that should be used to query this specific log in the Clearing
House. This ID will be used to query a message under a process as mentioned in Section 3.1.3.
The client_id is the user ID of the client making the log request. It's taken from the DAT, so the
CH logs whose certificate/key was used to get the DAT for the call. Theoretically, only the
owner of the certificate/key should have been able to get the DAT. The chain_hash is for data
immutability. More details on this will be provided in the next version of the deliverable.

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 39 of 70

3.1.2 Query	all	messages	of	a	process		
Retrieves all log entries stored under the given PID, as shown in Figure 25, in the Clearing
House. The Clearing House answers the request with a ResultMessage that contains as the
payload all log entries found. Each log entry is returned as a LogMessage, i.e., the payload of
the ResultMessage contains a JSON array of LogMessage. The Connector receives a
ResultMessage as a result from the Clearing House. The payload contains the found log entries.

Figure 25: Request method of querying all messages of a process in the Clearing House

Infomodel messages do not model the payload of a message, but the Clearing House logs both
the Infomodel messages (LogMessage) as meta-information and the payload as shown below:
HTTP/1.1 200 OK
Server: nginx/1.21.1
Date: Tue, 20 Jul 2021 12:50:05 GMT
Content-Type: multipart/form-data; boundary=336749cd-8331-46b4-b75d-d9d2ae80e3ac
Transfer-Encoding: chunked
Connection: keep-alive
Accept: */*
permissions-policy: interest-cohort=()
x-content-type-options: nosniff
x-frame-options: SAMEORIGIN

--336749cd-8331-46b4-b75d-d9d2ae80e3ac
content-disposition: form-data; name="header"
content-type: application/json; charset=UTF-8
content-transfer-encoding: 8bit
{
 "@context": {
 "ids": "https://w3id.org/idsa/core/",
 "idsc": "https://w3id.org/idsa/code/"
 },
 "@type": "ids:ResultMessage",
 "@id": "https://w3id.org/idsa/autogen/ResultMessage/cfe8bd4f-c8b5-42e4-aaae-1f594fa80719",
 "ids:issued": {
 "@value": "2021-07-20T12:50:04.916Z",
 "@type": "http://www.w3.org/2001/XMLSchema#dateTimeStamp"
 },
 "ids:issuerConnector": {
 "@id": "https://clearinghouse.aisec.fraunhofer.de/"
 },
 "ids:recipientConnector": [
 {
 "@id": "https://broker.ids.isst.fraunhofer.de/"
 }
],
 "ids:securityToken": {
 "@type": "ids:DynamicAttributeToken",
 "@id": "https://w3id.org/idsa/autogen/dynamicAttributeToken/d9bd7b02-89ca-4e08-be3c-
f3c149d62a62",
 "ids:tokenValue": "eyJ0eXAiOiJKV1QiLCJraWQiOi...",

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 40 of 70

 "ids:tokenFormat": {
 "@id": "idsc:JWT"
 }
 },
 "ids:senderAgent": {
 "@id": "https://clearinghouse.aisec.fraunhofer.de"
 },
 "ids:recipientAgent": [
 {
 "@id": "http://example.org"
 }
],
 "ids:correlationMessage": {
 "@id": "https://w3id.org/idsa/autogen/logMessage/c6c15a90-7799-4aa1-ac21-9323b87a7xv9"
 },
 "ids:modelVersion": "4.0.0"
}

--336749cd-8331-46b4-b75d-d9d2ae80e3ac
content-disposition: form-data; name="payload"
content-type: application/json
content-transfer-encoding: 8bit
[
 {
 "@context": {
 "idsc": "https://w3id.org/idsa/code/",
 "ids": "https://w3id.org/idsa/core/"
 },
 "@type": "ids:LogMessage",
 "@id": "https://w3id.org/idsa/autogen/logMessage/c6c15a90-7799-4aa1-ac21-9323b87a7xv9",
 "ids:modelVersion": "4.0.0",
 "ids:issued": "2021-07-20T12:50:04.916267339+00:00",
 "ids:issuerConnector": "https://provider.ids.isst.fraunhofer.de/",
 "ids:senderAgent": "http://example.org",
 "payload": "\"YXNhZnNzd2V3c2Vyd2VmcndlZnJ3ZWZydw==\"",
 "payload_type": "\"text/plain\""
 },
 {
 "@context": {
 "idsc": "https://w3id.org/idsa/code/",
 "ids": "https://w3id.org/idsa/core/"
 },
 "@type": "ids:LogMessage",
 "@id": "https://w3id.org/idsa/autogen/logMessage/c6c15a90-7799-4aa1-ac21-9323b87a7xv9",
 "ids:modelVersion": "4.0.0",
 "ids:issued": "2021-07-20T12:50:04.916327776+00:00",
 "ids:issuerConnector": "https://consumer.ids.isst.fraunhofer.de/",
 "ids:senderAgent": "http://example.org",
 "payload": "\"YXNhZnNzd2V3c2Vyd2VmcndlZnJ3ZWZydw==\"",
 "payload_type": "\"text/plain\""
 }
]
--336749cd-8331-46b4-b75d-d9d2ae80e3ac--

The result of a query to the Clearing House will also return both meta-information and payload
of the previously logged information. As stated above, the answer of the Clearing House to a
QueryMessage is a ResultMessage, as shown in Figure 26, that contains an array of all log
entries found. A LogMessage represents each log entry with two additional fields: payload and
payload_type.

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 41 of 70

Figure 26: Sample response message of querying all the messages under a PID in the Clearing House

3.1.3 Query	a	particular	messages	of	a	process		
This IDS message retrieves the log entry stored under the given ID and PID, as shown in Figure
27, in the Clearing House. The Clearing House answers the request with a ResultMessage that
contains as the payload the log entry found. The log entry is returned as a LogMessage, i.e., the
payload of the ResultMessage contains a LogMessage. ID in this message request is acquired
from the document_id as mentioned in the decoded response discussed in Section 3.1.1.

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 42 of 70

Figure 27: Request method of querying a message of a process in the Clearing House

Querying a message of a process behaves similarly to Section 3.1.2. Instead of a list of all the
logs under a PID, the ResultMessage shows the specific log with respect to the ID.

3.2 Deployment	
The code of Open-source Clearing House is available in the IDSA Git repository:
https://github.com/International-Data-Spaces-Association/ids-clearing-house-service

3.2.1 Prerequisites	
Prerequisite to host Clearing House:

• OpenSSL
• MongoDB
• Docker

Additionally, the Clearing House App depends on two microservices from the Clearing House
Core15:

• Document API: Responsible for storing the data.
• Keyring API: Provides cryptographic support for encryption and decryption of the

stored data.
The Clearing House Service API requires a Trusted Connector for the deployment of Clearing
House.

3.2.2 Clearing	House	Core	Configuration		
Document API
The Document API is responsible for storing the data and performs basic encryption and
decryption, for which it depends on the Keyring API. It is configured using the configuration
file Rocket.toml, which must specify a set of configuration options, such as the correct URLs
of the database and other service APIs:

• daps_api_url: Specifies the URL of the DAPS Service. Required to validate DAPS
token

• keyring_api_url: Specifies the URL of the Keyring API

15 https://github.com/International-Data-Spaces-Association/ids-clearing-house-core

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 43 of 70

• database_url: Specifies the URL of the database to store the encrypted documents.
Currently, only MongoDB is supported, so URL is supposed to be
MongoDB://<host>:<port>

• clear_db: true or false indicates if the database should be cleared when starting the
Service API or not. If true, a restart will wipe the database! Creating the Service API on
a clean database will initialize the database.

When starting the Clearing House Service API, it also needs the following environment
variables set:

• API_LOG_LEVEL: Allowed log levels are: Off, Error, Warn, Info, Debug, Trace

Keyring API
The Keyring API is responsible for creating keys and the actual encryption and decryption of
stored data. It is configured using the configuration file Rocket.toml, which must specify a set
of configuration options, such as the correct URLs of the database and other service APIs:

• daps_api_url: Specifies the URL of the DAPS Service. Required to validate DAPS
token

• database_url: Specifies the URL of the database to store document types and the master
key. Currently, only MongoDB is supported, so URL is supposed to be
MongoDB://<host>:<port>

• clear_db: true or false indicates if the database should be cleared when starting the
Service API or not. If true, a restart will wipe the database! Creating the Service API on
a clean database will initialize the database.

When starting the Clearing House Service API, it also needs the following environment
variables set:

• API_LOG_LEVEL: Allowed log levels are: Off, Error, Warn, Info, Debug, Trace

The Keyring API requires that its database contains the acceptable document types. Currently,
only the IDS_MESSAGE type is supported and must be present in the database for the Keyring
API to function correctly. The database will be populated with an initial document type that
needs to be located in init_db/default_doc_type.json.

DAPS
Both Document API and Keyring API need to be able to validate the certificate used by the
DAPS. If the DAPS uses a self-signed certificate, the certificate needs to be added in two places:

• /server/certs: The microservice will load certificates in this folder in the container and
use them for validation. The certificate needs to be in DER format.

• /usr/local/share/ca-certificates: The microservice relies on OpenSSL for parts of the
validation, and OpenSSL will not trust a self-signed certificate unless it was added in
this folder and update-ca-certificates was called in the docker container. Once this is
done, the container might need to be restarted.

If you use these dockerfiles and daps.aisec.fraunhofer.de as the DAPS, you only need to follow
the first step.

Docker Containers
There are two types of dockerfiles:

• Simple builds (e.g., dockerfile) that require you to build the Service APIs yourself using
Rust

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 44 of 70

• Multistage builds (e.g., dockerfile) that have a stage for building the rust code

To build the containers, check out the repository, and in the main directory, execute

docker build -f docker/<dockerfile> . -t <image-name>

Before using docker run or docker-compose, please read the Configuration section of the
Service API you are trying to run. All Containers built with the provided dockerfiles need two
volumes:

• The configuration file Rocket.tomlis expected at /server/Rocket.toml
• The folder containing the daps certificate is expected at /server/certs

Containers of the Keyring API require an additional volume:
• /server/init_db needs to contain the default_doc_type.json

3.2.3 Clearing	House	Service	Configuration		
Once Document API and Keyring API are configured following the instruction mentioned in
Section 3.2.2, the following configuration should be followed to install Clearing House Service.

Clearing House App Configuration
The Clearing House App is configured using the configuration file Rocket.toml, which must
specify a set of configuration options, such as the correct URLs of the database and other service
APIs:
• daps_api_url: Specifies the URL of the DAPS Service. Required to validate DAPS token
• keyring_api_url: Specifies the URL of the Keyring API
• document_api_url: Specifies the URL of the Document API
• database_url: Specifies the URL of the database to store process information. Currently,

only MongoDB is supported, so URL is supposed to be MongoDB://<host>:<port>
• infomodel_version: Specifies which The Clearing House uses the version of the InfoModel.

Currently: 4.0.0
• connector_name: Needed for IDS Messages as specified by the InfoModel
• server_agent: Needed for IDS Messages specified by the InfoModel
• clear_db: true or false indicates if the database should be cleared when starting the Service

API or not. If true, a restart will wipe the database! Starting the Service API on a clean
database will initialize the database.

• Signing key: Location of the private key (DER format) used for signing the Receipts.
Clearing House uses the PS512 algorithm for signing.

When starting the Clearing House Service API, it also needs the following environment
variables set:

• API_LOG_LEVEL: Allowed log levels are: Off, Error, Warn, Info, Debug, Trace

Signing Key
The Clearing House API sends a signed receipt as a response to a logging request. The key can
be created using OpenSSL:
OpenSSL genpkey -algorithm RSA -pkeyopt rsa_keygen_bits:4096 -outform der -out
private_key.der

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 45 of 70

Please note that the Clearing House requires the key to be in DER format. It must be available
to the Clearing House App under the path configured in Rocket.toml,
e.g.,/server/keys/private_key.der.

DAPS
The Clearing House needs to be able to validate the certificate used by the DAPS. If the DAPS
uses a self-signed certificate, the certificate needs to be added in two places:
• /server/certs: The Clearing House App will load certificates in this folder and use them for

validation. The certificate needs to be in DER format.
• /usr/local/share/ca-certificates: The Clearing House App relies on OpenSSL for parts of the

validation, and OpenSSL will not trust a self-signed certificate unless it was added in this
folder and update-ca-certificates was called. Once this is done, the container might need to
be restarted.

If you use these dockerfiles and daps.aisec.fraunhofer.de as the DAPS, you only need to follow
the first step.

Docker Containers
The Clearing House App can be built using Dockerfiles that are located here. There are two
types of dockerfiles:
• Simple builds (e.g., dockerfile) that require you to build the Clearing House APIs yourself

using Rust
• Multistage builds (e.g., dockerfile) that have a stage for building the rust code

To build the containers, check out the repository, and in the main directory, execute

docker build -f docker/<dockerfile> . -t <image-name>

Please read the Clearing House App Configuration section before using docker run or docker-
compose. Containers built with the provided dockerfiles need three volumes:

• The configuration file Rocket.tomlis expected at /server/Rocket.toml
• The folder containing the signing key needs to match the path configured for the signing

key in Rocket.toml, e.g.,/sever/keys
• The folder containing the daps certificate is expected at /server/certs

The Clearing House Processors are not run as docker containers. The Clearing House
Processors are needed to configure the Trusted Connector.

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 46 of 70

4 Marketplace	User	Interface	(UI)		

In PLATOON Marketplace, User Interface will present the metadata information of registered
connectors, Resources, and Apps. The connectors register themselves and the resources and
Apps it offers with the Metadata Registry (through the multipart/REST endpoints). The UI will
fetch the information stored in the Fuseki Database by using SPARQL queries. An important
point to note is that the UI will not provide the functionality to register connectors. The
Connector should register itself and its resources by forming the appropriate IDS messages and
sending them to the proper endpoints of the Metadata Registry. Once the Connectors registers
itself along with the resources it has to offer, it will be displayed in the UI.

The initial idea was to develop a CKAN-based data market. However, CKAN can't handle IDS
messages. There are no RDF/triple store connections. Furthermore, the amount of effort to
overcome these issues is calculated to be high. Thus, now PLATOON will offer a Marketplace
UI with the Metadata Registry (first version), illustrated in this deliverable. The potential
second version of the UI will have more functionality, address the usage of FIWARE Business
Framework and the API Ecosystem, and incorporate the Catalogues of Datasets and Data
Analytics tools.

4.1 Interaction	with	Marketplace	UI	
The User Interface of the Marketplace comprises of four windows:

• Dashboard: The Dashboard shows the summary of all the registered Connectors,
Resources, and Apps (services) in the Metadata Registry. As shown in Figure 28, the
UI reflects two registered Connectors from Company A and Company B. One Resource
and one App (metadata) are stored in the UI. With respect to the use-case mentioned in
Section 1.2, Company A, acting as a Data Provider, has registered the dataset's metadata
as Resource in the Metadata Registry. Also, Company A has one offered service called
"Easy Energy Service."

Figure 28: Dashboard of the UI

• Connector: This window shows the detailed list of all the Connectors in the UI, as
shown in Figure 29.

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 47 of 70

Figure 29: List of Connectors in the UI

• Resource: This window shows the list of all the Resources present in the UI, as shown

in Figure 30.

Figure 30: List of Resources in the UI

• App: This window shows the list of the Metadata of the Apps in the UI, as shown in

Figure 31.

Figure 31: List of the Apps(metadata) in the UI

4.2 Deployment	
The GitHub repository of the UI is here: https://github.com/PLATOONProject/Marketplace-UI

4.2.1 Prerequisites	
• NodeJS
• Metadata Registry

4.2.2 Configuration	
Steps to configure the UI16:

• The Metadata Registry17 needs to be installed.
• Navigate to ../src/urlConfig.js and set the link to the Fuseki server of the Metadata

Registry. If the URL of the Fuseki server of the Metadata Registry is
https://localhost/fuseki, then the JSON file will look like this:

16 The current version of the User Interface is not dockerized yet. Thus, this deliverable includes the developer's
guide, in case the reader needs to test the UI. For the latest installation guide, please refer to the README file.
17 https://github.com/PLATOONProject/Metadata-Registry

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 48 of 70

export const baseURL = "https://localhost/fuseki"

4.2.3 Run	Application	
• Navigated to the main folder
• Execute the following command

o npm install
o npm start

Once the UI is running, all the interaction between a Connector and the Metadata Registry will
be reflected in the UI.

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 49 of 70

5 Vocabulary	Provider	

IDS Vocabulary Provider is a central IDS component that manages all the vocabularies
(ontologies, reference data models, metadata elements), which can annotate and describe
datasets and data analytics tools. This includes the IDS information model and domain-specific
vocabularies.

The IDS Vocabulary Provider plays an essential role within the PLATOON reference
architecture defined in D2.1. It is the link between the Data Governance, Security, Privacy and
Sovereignty layer (based on IDS reference architecture) and the Interoperability layer formed.
The vocabulary provider provides direct Machine to Machine communication allowing to query
and exchange metadata according to the PLATOON Data Models defined in D2.3 through the
IDS connectors. In addition, the Vocabulary Provider has a Graphical User Interface (GUI),
where users can manage vocabularies (upload/upgrade/delete), search for specific terms,
visualize the vocabularies in a network graph and execute SPARQL queries.

The IDS Vocabulary Provider enhances the capabilities of the PLATOON Marketplace
regarding interoperability. It allows the data/data analytics tools users/consumers to easily
understand the data and data analytics tools published in the Marketplace, which facilitates the
implementation and integration of these datasets and data analytics tools.

Currently, there is no open-source version of an IDS Vocabulary Provider. There is only an
open-source Vocabulary Manager called Vocol 18, but the link to the IDS reference architecture
is missing. The latter is offered as a service called Vocoreg 19, but it is not open source. Thus,
PLATOON has developed a complete open-source IDS Vocabulary Provider based on Vocol
and extended it by adding an extra layer to make it compatible with the IDS ecosystem. The
design and implementation of the developed IDS Vocabulary Provider are explained in the
following sections.

Figure 32 shows the high-level architecture for the IDS Vocabulary Provider as indicated in the
IDS Reference Architecture [4].

Figure 32: IDS Vocabulary High-level architecture according to IDS reference architecture

18 https://vocol.iais.fraunhofer.de/
19 https://www.vocoreg.com/

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 50 of 70

PLATOON has developed a complete open-source IDS Vocabulary based on this high-level
architecture by reusing existing open-source components and extending them to add IDS
capabilities.

For the Reverse proxy, a Multipart endpoint was developed using Apache Tomcat20. Apache
Tomcat is a free and open-source implementation of the Jakarta Servlet, Jakarta Expression
Language, and WebSocket technologies 21. Apache Tomcat provides a "pure Java" HTTP web
server environment in which Java code can run.

For the Persistent storage, Apache Jena Fuseki 22 was used. Apache Jena Fuseki is a SPARQL
server. It can run as an operating system service, a Java web application (WAR file), and a
standalone server. Fuseki comes in two forms, a single system, "webapp", combined with a UI
for admin and query, and as "main", a server suitable to run as part of a larger deployment,
including with Docker or running embedded. In this case, the latter was used, and it was
embedded into a Docker. Fuseki provides the SPARQL 1.1 protocols for query and update as
well as the SPARQL Graph Store protocol. Fuseki is tightly integrated with TDB to provide a
robust, transactional persistent storage layer and incorporates Jena text query.

For the Vocabulary Management, instead of Vocoreg, VoCol 23 was used. VoCol is open-source
software that allows managing (upload/modify/remove) ontologies using version control
systems such as Git and repository hosting platforms like Github. VoCol provides a human-
readable presentation of the vocabularies by means of a user-friendly Graphical User Interface
(GUI). The GUI allows one to navigate through the metadata of the ontologies. The different
functionalities are explained in more detail in the following paragraphs.

Figure 33 shows the home screen for the PLATOON IDS Vocabulary Provider where you can
select one of the existing ontologies in the vocabulary provider.

Figure 33:PLATOON IDS Vocabulary Provider - Home Screen - Select an Ontology

In addition, it allows searching for a specific term within the set of ontologies, as shown in
Figure 34.

20 http://tomcat.apache.org/
21 https://projects.eclipse.org/projects/ee4j.jakartaee-platform
22 https://jena.apache.org/documentation/fuseki2/
23 https://github.com/vocol/vocol

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 51 of 70

Figure 34: PLATOON IDS Vocabulary Provider - Home Screen – Search for a Term

Once the specific ontology has been selected, it allows to navigate through different options:

On the one hand, the "Documentation" tab allows to search and display detailed information of
the different classes and properties. It allows selecting classes and properties and filter by
property type. When selecting a specific class or property, more detailed information is shown
on the right.

Figure 35: PLATOON IDS Vocabulary Provider - Documentation - Search for Classes and Properties

Furthermore, it allows searching for a specific term, as shown in Figure 36.

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 52 of 70

Figure 36: PLATOON IDS Vocabulary Provider - Documentation - Search for a Term

It also allows selecting the right different ways to visualize the detailed information.

Figure 37: PLATOON IDS Vocabulary Provider - Documentation - Different Ways to show detailed information

On the other hand, the "Visualisation" tab allows visualizing the ontologies by representing
graphically the relationships between the different terms through a network diagram, as shown
in Figure 38

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 53 of 70

Figure 38: PLATOON IDS Vocabulary Provider – Visualisation – Network Diagram

When clicking on any of the terms or properties, more detailed information is shown in the right
of the screen as represented in the next figure:

Figure 39: PLATOON IDS Vocabulary Provider – Visualisation - Detailed information of terms

Also, several functionalities at the bottom allow to zoom in or out, search for a term, and filter
by specific properties.

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 54 of 70

Figure 40: PLATOON IDS Vocabulary Provider – Visualisation - Additional Searching and Filtering

Functionalities

Moreover, the "Querying" tab allows to directly run SPARQL queries on the selected ontology.

Figure 41: PLATOON IDS Vocabulary Provider – Querying - SPARQL query execution

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 55 of 70

Figure 42: PLATOON IDS Vocabulary Provider – Querying - SPARQL query result

Finally, the GUI has an administration section that allows you to insert new ontologies in the
Platoon IDS Vocabulary Provider:

Figure 43: PLATOON IDS Vocabulary Provider – Configuration – Upload new Ontologies

5.1 Interaction	With	Vocabulary	Provider	
Apart from the GUI, the PLATOON IDS Vocabulary supports machine-to-machine
communication allowing to query the different ontologies directly through an IDS connector.
To do this, a REST API service was built on top of Vocol to allow the exchange of information
between Vocol, Fuseki, and the IDS Core Container.

The IDS Core Container was developed using the SpringBoot library. A number of IDS
messages have been implemented. Some of the messages allow IDS connectors from the pilots
to communicate with the Platoon IDS Vocabulary Provider. Other messages allow the Platoon
IDS Vocabulary Provider to communicate with other components of the IDS ecosystem, such

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 56 of 70

as the Broker. In the following sections each of the messages is explained in more detail. Also
the complete text of the messages is included in Appendix A.

5.1.1 DescriptionRequestMessage

This message allows a connector to call the PLATOON IDS Vocabulary Provider and obtain
generic information from it; specifically, a "config.json" file is returned. It is a multipart POST
message that will contain a header and a payload. In the header, the content of the message is
displayed. In this case, the payload is empty.

URL to call: SERVER-URL:8080\api\ids\data

Figure 44: PLATOON IDS Vocabulary Provider - IDS Messages - Description Request Message

5.1.2 DescriptionResponseMessage	
This message is the corresponding reply message to the description request message that
contains in the payload the "config.json" file.

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 57 of 70

Figure 45: PLATOON IDS Vocabulary Provider - IDS Messages - Description Response Message

	

5.1.3 QueryMessage	
This message allows an IDS connector to send SPARQL queries directly to the PLATOON IDS
Vocabulary Provider. It is a multipart POST message that contains a header and a payload. The
header contains the content of the message, and the payload contains the corresponding
SPARQL query.

URL call: SERVER-URL:8080\api\ids\data

Figure 46: PLATOON IDS Vocabulary Provider - IDS Messages - Query Message

As mentioned, the header contains the content of the message. This message contains a series
of fields defined by the IDS reference architecture, which will vary depending on the type of
message. The specific fields are the type of message, context, token, and information model
used. In addition, in the case of the PLATOON IDS Vocabulary Provider, two new fields have
been included that provide more flexibility to the queries. These fields are as follows:

• ids:ontologyName: the name of the specific ontology to execute the query.

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 58 of 70

Figure 47: PLATOON IDS Vocabulary Provider - IDS Messages - Query Message - Header Fields- ontologyName

If everything has gone correctly, a ResponseMessage will be returned with the results
of the query specified in the payload field as shown in the following Figure:

Figure 48: PLATOON IDS Vocabulary Provider - IDS Messages - Query Message - Header Fields- ontologyName

- the result

• ids:searchTerm: If this field is present, it will run the search for the specified term within
the specified ontology.

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 59 of 70

Figure 49: PLATOON IDS Vocabulary Provider - IDS Messages - Query Message - Header Fields- searchTerm

	

5.1.4 ConnectorUpdateMessage	
This message is used for registering the PLATOON IDS Vocabulary Provider at the PLATOON
IDS Metadata Registry. This way, the rest of the connectors can look for the PLATOON IDS
Vocabulary Provider and connect to it. It is a POST message where the input parameter is the
URI of the IDS Metadata Registry.

URL to call:SERVER-URL:8080\api\ids\connector\update

Figure 50: PLATOON IDS Vocabulary Provider - IDS Messages - ConnectorUpdateMessage

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 60 of 70

5.1.5 ConnectorUnavailableMessage	
This message is used for unregistering PLATOON IDS Vocabulary Provider at the PLATOON
IDS Metadata Registry. Similar to the previous message, it is a POST message where the input
parameter is the URI of the Metadata Registry.

URL to call: SERVER-URL:8080\api\ids\connector\remove

Figure 51: PLATOON IDS Vocabulary Provider - IDS Messages - ConnectorUnavailableMessage

5.2 Deployment	of	IDS	Vocabulary	Provider	
The code of IDS Vocabulary Provider is hosted in the PLATOON Git repository:
https://github.com/PLATOONProject/PLATOON_IDS-Vocabulary-Provider

The development environment of the IDS Vocabulary Provider consist on three main
components:

• Vocol: an open-source Vocabulary Manager.
• Apache Jena Fuseki and TDB: A Sparql Server and database for storing and accessing

the different vocabularies.
• IDS Vocabulary Provider: The core component that permits the communication

between the conectors and the vocabulary provider.

5.2.1 Prerequisites	
Prerequisite to run the IDS Vocabulary Provider:

• Docker
• Docker Compose
• Java
• Maven
• OpenSSL

5.2.2 Structure	of	IDS	Vocabulary	Provider	
Normally there will exist one Vocabulary Provider for each ecosystem type. There will be a
docker-compose file that will be in charge of creating all the corresponding images, the
containers and running them. All the containers will be able to communicate internally.
Apart from the docker-compose file, there will be three dockerfiles, one for each of the
mentioned components:

- Vocol: Will create the image for the vocol manager, downloading all the needed
requirements; nodejs, npm etc. .and execute the application.

- Fuseki: Will create the image for the Fuseki server and launch the server.
- IDS Vocabulary provider: will create the image for the core component and launch

the corresponding server, a Java environment running the Maven package of the code.

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 61 of 70

The IDS Vocabulary provider is a connector and so, it needs some certificates to
implement a secure communication between the different components. Hence, it will
communicate with a DAPS and the DAPS will give the connector a valid token each
time a message is send. This component will communicate also with the Fuseki
component to execute the requested queries and to obtain the results.

5.2.3 Creation	of	SSL	Certificates	
A valid X.509 certificate, signed by a trusted certification authority, is strongly recommended
to avoid warnings about insecure HTTPS connections. The certificate needs to be of .crt format
and must have the name server.crt. In case your certificate is of .pem format, it can be converted
with the following commands, which require OpenSSL to be installed:

OpenSSL x509 -in mycert.pem -out server.crt
OpenSSL RSA -in mycert.pem -out server.key
mkdir cert
mv server.crt cert/
mv server.key cert/

5.2.4 Configuring	the	Docker-compose	File	
The docker-compose file is responsible of launching the three containers needed for the
Vocabulary Provider to run properly and enable the communication of the three components as
they are built in the same network.
Each of the components is exposed in one specific port. Then, if a certain port is occupied by
another component of the ecosystem, it is possible to change this port through this file.
The changes of the port can be done in the Vocol component and in the IDS Vocabulary
provider if needed, as these components are independent. To do that, edit the docker-compose
file and change the corresponding port:

vocol-service:
 container_name: vocol_service_container
 build:
 context: .
 dockerfile: ./dockerfile-vocol
 network: host
 expose:
 - 3000
 ports:
 - "3000:3000"

Another crucial part of adapting the configuration is to provide the correct location of the X.509
certificate in the IDS messages service. Assuming the location of the certificate is
"/home/vocolProject/cert," the corresponding configuration would be:

volumes:
- /home/vocolProject/cert:/etc/cert/
[…]

5.2.4.1 Run Application
To start up the IDS Vocabulary Provider, run the following command inside the directory of
the docker-compose.yml file:

docker-compose up -d

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 62 of 70

This process can take several minutes to complete. You can test whether the IDS Vocabulary
Provider has successfully started by opening the following urls:

- http://localhost:3000. This is the main page of the vocol service. The UI of the vocol
will appear listing the existing ontologies.

- http://localhost:3030: If the fuseki server is running properly, you could see the main
page for the fuseki manager. This page will only be used for manteinance purposes. The
dot in the right (server status) side must be green.

- https://localhost:8080: If the IDS Messaging service is running this url will show an
error message but it will be loaded.

To enter to a running container, you could use:

Docker exec -it ids_messages_container /bin/bash : to get a bash shell in the container
Exit to get out

To see the logs of the container:
Go to the directory containing the docker files and:
Docker-compose logs

To interact with a container:
Docker attach vocol_service_container :

The latter could be useful, for example when uploading new ontologies if it is needed to enter
some user or password.

5.2.4.2 Update
Containers can be either hot updated or restarted to apply the changes. To hot update a
container, run the following command:

docker-compose up -d—no-deps—build <container name>

Alternatively, one can restart the entire service by running:

docker-compose down : To stop all the containers
docker-compose up –d

If you want to get all the images create again, you could use:
 Docker-compose build : To build again the images

docker-compose up –d

Figure 52: IDS Vocabulary Provider - Successfully started test

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 63 of 70

6 Conclusion	

This deliverable reports the design of the PLATOON marketplace module that implements a
common endpoint to access the data and energy services. The PLATOON Marketplace is a
place to search and discover data assets and services provided by the Marketplace participants
fostering the interaction between data/service consumers and providers.
The user interface of the PLATOON Marketplace will reflect all the metadata of the datasets
and services registered in the PLATOON IDS Metadata Registry. Upon a settled agreement
between the two parties, the data flow will start between the data/service consumer and provider
through the corresponding IDS connectors as per explained in deliverable D3.4. The Clearing
House will contain the log of the settled agreement.
In addition, the developed IDS Vocabulary Provider enhances the capabilities of the
PLATOON Marketplace regarding interoperability. It allows the data/data analytics tools
users/consumers to easily understand the data and services published in the Marketplace, which
facilitates the implementation and integration of these assets.
Finally, the IDS Identity Provider adopted by these PLATOON Marketplace components will
create, maintain, monitor, and validate the participants' identity information. This deliverable
aimed to reflect this scenario with examples.

The second version of this deliverable (D3.9) due in M30 will demonstrate the interaction of
all the PLATOON Marketplace components through a real-life large scale pilot.

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 64 of 70

References	

[1] “International Data Spaces Association,” [Online]. Available:

https://internationaldataspaces.org/download/20861/.
[2] P. D.-I. B. Otto, S. Steinbuß, A. Teuscher and D.-I. S. Lohmann, Reference Architecture

Model, vol. 3.0, International Data Spaces Association, April 2019.
[3] S. Steinbuss and S. Bader, Specification: IDS Clearing House, International Data Spaces

Association, 2020.
[4] “International Data Spaces Jive,” [Online]. Available:

Industrialdataspace.jiveon.com/docs/DOC-3232.

Appendix	A:	IDS	Vocabulary	Provider	–	IDS	messages	

DescriptionRequestMessage
Header:
{
"@context" : {
"ids" : "https://w3id.org/idsa/core/",
"idsc" : "https://w3id.org/idsa/code/"
},
"@type" : "ids:DescriptionRequestMessage",
"@id" : "https://w3id.org/idsa/autogen/descriptionRequestMessage/cc5afba5-db62-4c68-
9858-6fd27c9f521b",
"ids:senderAgent" : {
"@id" : "https://w3id.org/idsa/autogen/baseConnector/7b934432-a85e-41c5-9f65-
669219dde4ea"
},
"ids:issuerConnector" : {
"@id" : "https://w3id.org/idsa/autogen/baseConnector/7b934432-a85e-41c5-9f65-
669219dde4ea"
},
"ids:issued" : {
"@value" : "2020-10-13T13:55:54.345+02:00",
"@type" : "http://www.w3.org/2001/XMLSchema#dateTimeStamp"
},
"ids:modelVersion" : "4.0.0",
"ids:securityToken" : {
"@type" : "ids:DynamicAttributeToken",
"@id" : "https://w3id.org/idsa/autogen/dynamicAttributeToken/21b0ba17-dfb3-42f2-b7d0-
ece4debfa4af",
"ids:tokenValue" : "...",
"ids:tokenFormat" : {
"@id" : "idsc:JWT"
}
},
"ids:recipientConnector" : [{
"@id" : "https://localhost:8080/api/ids/data"

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 65 of 70

}]
}
Payload:
Empty

ResponseMessage
{
 "@context" : {
 "ids" : "https://w3id.org/idsa/core/",
 "idsc" : "https://w3id.org/idsa/code/"
 },
 "@type" : "ids:ResponseMessage",
 "@id" : "https://w3id.org/idsa/autogen/responseMessage/ec957493-8e8e-4416-9b7b-
d464c0899434",
 "ids:modelVersion" : "4.0.0",
 "ids:issued" : {
 "@value" : "2021-12-21T15:04:25.706Z",
 "@type" : "http://www.w3.org/2001/XMLSchema#dateTimeStamp"
 },
 "ids:correlationMessage" : {
 "@id" : "https://w3id.org/idsa/autogen/queryMessage/aeece6ec-3ed0-4513-b556-
5a7ee8d64fb5"
 },
 "ids:issuerConnector" : {
 "@id" : "https://ids_vocabulary_provider.com/"
 },
 "ids:senderAgent" : {
 "@id" : "https://w3id.org/idsa/autogen/baseConnector/7b934432-a85e-41c5-9f65-
669219dde4ea"
 },
 "ids:securityToken" : {
 "@type" : "ids:DynamicAttributeToken",
 "@id" : "https://w3id.org/idsa/autogen/dynamicAttributeToken/54578635-0868-40fa-933d-
82140d01f320",
 "ids:tokenValue" :
"eyJhbGciOiJSUzI1NiIsInR5cCIgOiAiSldUIiwia2lkIiA6ICJMRk9IbnR0cGFjbTJpS0VhSkw
tclNpSWlFTFlMbEkxRmxmQlBfZ3UzMmh3In0.eyJleHAiOjE2NDAwOTkxMjUsIm5iZiI6
MTY0MDA5OTA2NSwiaWF0IjoxNjQwMDk5MDY1LCJqdGkiOiJhYTljYjYwNS05NDdk
LTQ4ZmItYWI1Yy02MjQzMDVhMDgyMzYiLCJpc3MiOiJodHRwczovL2RhZWtpbi5kYX
BzLnRlY25hbGlhLmNvbTo4NDQzL2F1dGgvcmVhbG1zL0RhZWtpbiIsImF1ZCI6Imh0dH
BzOi8vdzNpZC5vcmcvaWRzYS9jb2RlL0lEU19DT05ORUNUT1JTX0FMTCIsInN1YiI6Ik
YzOjY0OjIwOkUzOjJCOkE3OjVBOkMyOkMzOjA5OkFFOkQyOjA4OkZBOkE4OkIwOj
YyOjIxOjdCOjgwOmtleWlkOkIyOkEyOkNFOjBGOjRGOkQxOjVGOkUyOjVFOkEwOkQ
zOkYyOjQyOjAxOjc1Ojk4OjBBOkRBOjg0OjAyIiwic2NvcGUiOiJpZHNjOklEU19DT05O
RUNUT1JfQVRUUklCVVRFU19BTEwiLCJzZWN1cml0eVByb2ZpbGUiOiJpZHNjOkJBU
0VfQ09OTkVDVE9SX1NFQ1VSSVRZX1BST0ZJTEUiLCJAdHlwZSI6ImlkczpEYXRQY
Xlsb2FkIiwicmVmZXJyaW5nQ29ubmVjdG9yIjoiaHR0cHM6Ly92b2NhYnVsYXJ5LmRhZ
Wtpbi50ZWNuYWxpYS5jb20iLCJAY29udGV4dCI6Imh0dHBzOi8vdzNpZC5vcmcvaWRz
YS9jb250ZXh0cy9jb250ZXh0Lmpzb25sZCJ9.BDzp_yE1pHXO2sWlwwEvkzdgL9hMKFC
YE-it_U2FJ3AFggqZiShOHX0adEc8qoK4o-

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 66 of 70

_MbO_1AweDPvvNQvldU50cdt9Zd6_UkyjORK272WGqdrDj7pFQmZJueH3XAAkECnO
WuF-DgyqxA6DWLhl93_-VLgDwfLWtRUbXIljw7Wc3fZrZZ-8JX_-
NHufpUjtNFYusDrqLppVVuDttoK2h3YUqCnsI6Tjg9rSwlmWsUon4ib8hcF93_E6FA7XC
WkAed1nZubPEA3YDzvRaw03g_Sep-ajrKFcg-
_DKCJK4eBQw7wdm9GXHH9jZRY0kjgZA7YmwjCaPMFd50HUMllNUzg",
 "ids:tokenFormat" : {
 "@id" : "https://w3id.org/idsa/code/JWT"
 }
 }
}

QueryMessage
Header:
{
"@context" : {
"ids" : "https://w3id.org/idsa/core/",
"idsc" : "https://w3id.org/idsa/code/"
},
"@type" : "ids:QueryMessage",
"@id" : "https://w3id.org/idsa/autogen/queryMessage/aeece6ec-3ed0-4513-b556-
5a7ee8d64fb5",
"ids:securityToken" : {
"@type" : "ids:DynamicAttributeToken",
"@id" : "https://w3id.org/idsa/autogen/dynamicAttributeToken/5129decb-1967-402e-b2fc-
0f9695c9253e",
"ids:tokenFormat" : {
"@id" : "idsc:JWT"
},
"ids:tokenValue" :
"eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCIsImtpZCI6ImRlZmF1bHQifQ.eyJpZHMtYXR0c
mlidXRlcyI6sIm5iZiI6MTU4NjE3NTY0MCwiZXhwIjoxNTg2MTc5MjQwfQ.Puo5rFxDIW
CDgEFbW9ms-VKhtJeE_imm0LTIVuTXXR-0NKkmoqC4IEbB6YQbsG0t3HEYpA-
k2oPdDSYW1ScMu5mbbjQBlL5JEH1eUrHAjmUhnIt-oQ4rlu2vDFpWH-mcIfOMbKdw"
},
"ids:senderAgent" : {
"@id" : "http://example.org"
},
"ids:issuerConnector" : {
"@id" : "https://broker.ids.isst.fraunhofer.de/"
},
"ids:modelVersion" : "4.0.0",
"ids:issued" : {
"@value" : "2021-10-06T14:20:47.512+02:00",
"@type" : "http://www.w3.org/2001/XMLSchema#dateTimeStamp"
},
"ids:queryScope" : {
"@id" : "idsc:ALL"
},
"ids:queryLanguage" : {

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 67 of 70

"@id" : "idsc:SPARQL"
},
"ids:ontologyName":" saref4ener_ontology"
}
Payload:
SELECT ?s ?p1 ?p2 ?o WHERE { GRAPH ?g {
<https://w3id.org/idsa/core/AccessTokenResponseMessage> ?p1 ?o . OPTIONAL { ?s ?p2
<https://w3id.org/idsa/core/AccessTokenResponseMessage> .} } }

QueryMessage (search for a term)
{
"@context" : {
"ids" : "https://w3id.org/idsa/core/",
"idsc" : "https://w3id.org/idsa/code/"
},
"@type" : "ids:QueryMessage",
"@id" : "https://w3id.org/idsa/autogen/queryMessage/aeece6ec-3ed0-4513-b556-
5a7ee8d64fb5",
"ids:securityToken" : {
"@type" : "ids:DynamicAttributeToken",
"@id" : "https://w3id.org/idsa/autogen/dynamicAttributeToken/5129decb-1967-402e-b2fc-
0f9695c9253e",
"ids:tokenFormat" : {
"@id" : "idsc:JWT"
},
"ids:tokenValue" :
"eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCIsImtpZCI6ImRlZmF1bHQifQ.eyJpZHMtYXR0c
mlidXRlcyI6sIm5iZiI6MTU4NjE3NTY0MCwiZXhwIjoxNTg2MTc5MjQwfQ.Puo5rFxDIW
CDgEFbW9ms-VKhtJeE_imm0LTIVuTXXR-0NKkmoqC4IEbB6YQbsG0t3HEYpA-
k2oPdDSYW1ScMu5mbbjQBlL5JEH1eUrHAjmUhnIt-oQ4rlu2vDFpWH-mcIfOMbKdw"
},
"ids:senderAgent" : {
"@id" : "http://example.org"
},
"ids:issuerConnector" : {
"@id" : "https://broker.ids.isst.fraunhofer.de/"
},
"ids:modelVersion" : "4.0.0",
"ids:issued" : {
"@value" : "2021-10-06T14:20:47.512+02:00",
"@type" : "http://www.w3.org/2001/XMLSchema#dateTimeStamp"
},
"ids:queryScope" : {
"@id" : "idsc:ALL"
},
"ids:queryLanguage" : {
"@id" : "idsc:SPARQL"
},
"ids:ontologyName":"saref4ener_ontology",
"ids:searchTerm":"energy"

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 68 of 70

}
Payload
empty.

ConnectorUpdateMessage
Header
{
 "@context" : {
 "ids" : "https://w3id.org/idsa/core/",
 "idsc" : "https://w3id.org/idsa/code/"
 },
 "@type" : "ids:ConnectorUpdateMessage",
 "@id" : "https://w3id.org/idsa/autogen/connectorUpdateMessage/1d2dca75-5d27-4c4c-
b698-113241df1869",
 "ids:modelVersion" : "4.0.0",
 "ids:securityToken" : {
 "@type" : "ids:DynamicAttributeToken",
 "@id" : "https://w3id.org/idsa/autogen/dynamicAttributeToken/5b456eba-9527-4c32-9b7a-
1fc46a82a77b",
 "ids:tokenFormat" : {
 "@id" : "idsc:JWT"
 },
 "ids:tokenValue" :
"eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCIsImtpZCI6ImRlZmF1bHQifQ.eyJpZHMtYXR0c
mlidXRlcyI6eyJzZWN1cml0eV9wcm9maWxlIjp7ImF1ZGl0X2xvZ2dpbmciOjJ9LCJpZHNf
bWVtYmVyc2hpcCI6dHJ1ZSwiaWRzLXVyaSI6Imh0dHA6Ly9zb21lLXVyaSIsInRyYW5z
cG9ydENlcnRzU2hhMjU2IjoiYmFjYjg3OTU3NTczMGJiMDgzZjI4M2ZkNWI2N2E4Y2I4
OTY5NDRkMWJlMjhjN2IzMjExN2NmYzc1N2M4MWU5NiJ9LCJzY29wZXMiOlsiaWRz
X2Nvbm5lY3RvciJdLCJhdWQiOiJJRFNfQ29ubmVjdG9yIiwiaXNzIjoiaHR0cHM6Ly9kYX
BzLmFpc2VjLmZyYXVuaG9mZXIuZGUiLCJzdWIiOiJDPURFLE89RnJhdW5ob2ZlcixPV
T1JU1NULENOPTQ5ZmE5ODE1LTk1NTUtNDAzOC04YTlhLTRlMzZkZTM3YmY0NSI
sIm5iZiI6MTU4NjE3NTY0MCwiZXhwIjoxNTg2MTc5MjQwfQ.Puo5rFxDIWCDgEFbW9
ms-
VKhtJeE_imm0LTIVuDXw3Gk3tLRy2uDz0lQ1yvBafmHzR29Cx3GDjhl6_LDvFfROFdQN
iKeHq3I2gg6zzTYUEyf1FCBmmZg0Njj_0b_v6w_Atb9qTi0wu4IWieWvEeB32b4W4s2wf
w7s9GVJ7Gxbb3EpzzsorWbYDcwOPjRjHxJnLIqHBWg_JUdwxQtSh871mVYtzutwxCSthJ
0A2u5XB6CNYOpyMGrTXXR-0NKkmoqC4IEbB6YQbsG0t3HEYpA-
k2oPdDSYW1ScMu5mbbjQBlL5JEH1eUrHAjmUhnIt-oQ4rlu2vDFpWH-mcIfOMbKdw"
 },
 "ids:senderAgent" : {
 "@id" : "http://ids_vocabulary_provider.com"
 },
 "ids:issued" : {
 "@value" : "2021-12-21T04:00:00.000Z",
 "@type" : "http://www.w3.org/2001/XMLSchema#dateTimeStamp"
 },
 "ids:issuerConnector" : {
 "@id" : "https://broker.ids.isst.fraunhofer.de/"
 }
}

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 69 of 70

Payload:
{
 "@context" : {
 "ids" : "https://w3id.org/idsa/core/",
 "idsc" : "https://w3id.org/idsa/code/"
 },
 "@type" : "ids:BaseConnector",
 "@id" : "https://w3id.org/idsa/autogen/baseConnector/7b934432-a85e-41c5-9f65-
669219dde4ea",
 "ids:version" : "0.0.1-SNAPSHOT",
 "ids:description" : [{
 "@value" : "IDS Connector for hosting the messages for the Vocabulary Provider",
 "@type" : "http://www.w3.org/2001/XMLSchema#string"
 }],
 "ids:hasDefaultEndpoint" : {
 "@type" : "ids:ConnectorEndpoint",
 "@id" : "https://w3id.org/idsa/autogen/connectorEndpoint/711719ed-05fe-40c6-9137-
62c7599d2367",
 "ids:accessURL" : {
 "@id" : "https://vocabulary.daekin.tecnalia.com:8080/api/ids/data"
 }
 },
 "ids:securityProfile" : {
 "@id" : "https://w3id.org/idsa/code/BASE_SECURITY_PROFILE"
 },
 "ids:maintainer" : {
 "@id" : "https://www.tecnalia.com/"
 },
 "ids:curator" : {
 "@id" : "https://www.tecnalia.com/"
 },
 "ids:inboundModelVersion" : ["4.0.0"],
 "ids:outboundModelVersion" : "4.0.0",
 "ids:title" : [{
 "@value" : "IDS Vocabulary Provider",
 "@type" : "http://www.w3.org/2001/XMLSchema#string"
 }]
}

ConnectorUnavailableMessage
Header:
{
 "@context" : {
 "ids" : "https://w3id.org/idsa/core/",
 "idsc" : "https://w3id.org/idsa/code/"
 },
 "@type" : "ids:ConnectorUnavailableMessage",
 "@id" : "https://w3id.org/idsa/autogen/connectorUnavailableMessage/63d6a13f-abf9-42f7-
ab26-335b7927606e",

D3.5 – Marketplace demonstrator and report

PLATOON Contract No. GA 872592 Page 70 of 70

 "ids:affectedConnector" : {
 "@id" : "https://broker.ids.isst.fraunhofer.de/"
 },
 "ids:senderAgent" : {
 "@id" : "http://ids_vocabulary_provider.com"
 },
 "ids:securityToken" : {
 "@type" : "ids:DynamicAttributeToken",
 "@id" : "https://w3id.org/idsa/autogen/dynamicAttributeToken/e80bc6c0-ddfe-483b-8c07-
0bac59d99f51",
 "ids:tokenFormat" : {
 "@id" : "idsc:JWT"
 },
 "ids:tokenValue" :
"eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCIsImtpZCI6ImRlZmF1bHQifQ.eyJpZHMtYXR0c
mlidXRlcyI6eyJzZWN1cml0eV9wcm9maWxlIjp7ImF1ZGl0X2xvZ2dpbmciOjJ9LCJpZHNf
bWVtYmVyc2hpcCI6dHJ1ZSwiaWRzLXVyaSI6Imh0dHA6Ly9zb21lLXVyaSIsInRyYW5z
cG9ydENlcnRzU2hhMjU2IjoiYmFjYjg3OTU3NTczMGJiMDgzZjI4M2ZkNWI2N2E4Y2I4
OTY5NDRkMWJlMjhjN2IzMjExN2NmYzc1N2M4MWU5NiJ9LCJzY29wZXMiOlsiaWRz
X2Nvbm5lY3RvciJdLCJhdWQiOiJJRFNfQ29ubmVjdG9yIiwiaXNzIjoiaHR0cHM6Ly9kYX
BzLmFpc2VjLmZyYXVuaG9mZXIuZGUiLCJzdWIiOiJDPURFLE89RnJhdW5ob2ZlcixPV
T1JU1NULENOPTQ5ZmE5ODE1LTk1NTUtNDAzOC04YTlhLTRlMzZkZTM3YmY0NSI
sIm5iZiI6MTU4NjE3NTY0MCwiZXhwIjoxNTg2MTc5MjQwfQ.Puo5rFxDIWCDgEFbW9
ms-
VKhtJeE_imm0LTIVuDXw3Gk3tLRy2uDz0lQ1yvBafmHzR29Cx3GDjhl6_LDvFfROFdQN
iKeHq3I2gg6zzTYUEyf1FCBmmZg0Njj_0b_v6w_Atb9qTi0wu4IWieWvEeB32b4W4s2wf
w7s9GVJ7Gxbb3EpzzsorWbYDcwOPjRjHxJnLIqHBWg_JUdwxQtSh871mVYtzutwxCSthJ
0A2u5XB6CNYOpyMGrTXXR-0NKkmoqC4IEbB6YQbsG0t3HEYpA-
k2oPdDSYW1ScMu5mbbjQBlL5JEH1eUrHAjmUhnIt-oQ4rlu2vDFpWH-mcIfOMbKdw"
 },
 "ids:issued" : {
 "@value" : "2021-12-21T17:00:00.000Z",
 "@type" : "http://www.w3.org/2001/XMLSchema#dateTimeStamp"
 },
 "ids:modelVersion" : "4.0.0",
 "ids:issuerConnector" : {
 "@id" : "https://broker.ids.isst.fraunhofer.de/"
 }
}

Payload:
Empty

