
D5.1 - Reference Platform Instantiation

PLATOON Contract No. GA 872592 Page 1 of 34

Grant Agreement N° 872592

Deliverable D5.1

Reference Platform Instantiation

Contractual delivery date:

M27

Actual delivery date:

31/03/2022

Responsible partner:

P03: UBO, GERMANY

Ref. Ares(2022)2460227 - 01/04/2022

D5.1 - Reference Platform Instantiation

PLATOON Contract No. GA 872592 Page 2 of 34

Project Title PLATOON – Digital platform and analytic tools for energy

Deliverable number D5.1

Deliverable title Reference Platform Instantiation

Author(s): UBO, ENGIE, TECN, IAIS, ENG, IMP, GIR, SAM, TIB,

PDM, PI, MINSAIT

Responsible Partner: UBO (Partner nº3)

Date: 18/03/2022

Nature Other

Distribution level (CO,

PU):

PU

Work package number WP5 – WP5-Big data sharing and analysis reference

implementations

Work package leader UBO, Germany

Abstract: The aim of this task is to create a reference platform

instantiation of the PLATOON reference architecture defined

in D2.1 (V1) and D2.5 (V2) using the Open-Source

Components developed in WP2, WP3 and WP4. The

PLATOON reference architecture specifies the main building

blocks for the interoperability between heterogeneous digital

platforms and analytics tools for energy that are based on

different technologies. The reference instantiation conducted

in this task serves as a proof-of-concept for the PLATOON

reference architecture and also as a testbed for doing an

integration test of the different open-source components

explained in D5.5. Software solutions such as Docker and

Swarmpit are discussed and how they assist system

administrators with the deployment and support of the

different components. In addition, implementation details of

the platform instantiation are discussed in detail.

Keyword List: Reference Platform, Open-Source Instantiation,

Implementation, Docker, Swarmpit

Reviewer(s):

Martino Maggio (ENG)

Erik Maqueda (TECN)

Philippe Calvez (ENGIE)

Approved by:

Recommended/mandatory

readers:

All WP5 partners. WP4 and WP6 partners for reference for

implementation and testing. WP8 and WP9 partners for

exploitation and dissemination.

The research leading to these results has received funding from the European

Community's Horizon 2020 Work Program (H2020) under grant agreement no 872592.

D5.1 - Reference Platform Instantiation

PLATOON Contract No. GA 872592 Page 3 of 34

This report reflects the views only of the authors and does not represent the opinion of the European

Commission, and the European Commission is not responsible or liable for any use that may be made

of the information contained therein.

D5.1 - Reference Platform Instantiation

PLATOON Contract No. GA 872592 Page 4 of 34

Document Revision History

Version Date
Modifications Introduced

Modification Reason Modified by

v0.1 28/01/2022 1st version of TOC UBO

v0.2 11/03/2022 Semantic Adapters and FQP TIB

v0.3 18/03/2022 First finished version for internal

review

All

v0.4 19/03/2022 Final version for internal Review ENG, UBO

v0.5 25/03/2022 Correction based on internal review UBO

D5.1 - Reference Platform Instantiation

PLATOON Contract No. GA 872592 Page 5 of 34

Table of Contents

Table of Contents ... 5

List of Figures .. 5

List of Tables .. 6

Terms and abbreviations .. 7

Executive Summary ... 8

1 Introduction ... 9

2 Reference Architecture ... 9

2.1 IOT Connectors .. 11

2.2 Semantic Adapters and Federated Querying .. 11

2.3 IDS Connectors .. 16

2.4 Metadata Registry .. 17

2.5 IDS Vocabulary Provider ... 18

2.6 Data Analytics Tools .. 19

2.7 Data Analytics Dashboard .. 21

3 Testing Scenarios .. 22

3.1 Edge-Scenario .. 22

3.2 Non-Edge-Scenario .. 23

3.3 Data-Sharing Scenario .. 23

4 Hardware Specification ... 24

5 Implementation Details ... 24

5.1 Docker .. 25

5.2 Docker Compose .. 25

5.3 Docker Swarm .. 26

5.4 Swarmpit .. 26

4.4.1 Installing Swarmpit .. 26

6 Conclusions ... 33

7 References ... 33

List of Figures

FIGURE 1: PLATOON REFERENCE ARCHITECTURE .. 10

FIGURE 2: KNOWLEDGE GRAPH CREATION PIPELINE .. 12

FIGURE 3: THE PLATOON PIPELINE .. 13

FIGURE 4: PORTION OF TRANSFORM_AND_LOAD.PY ILLUSTRATING THE UPLOADING OF RDF

DATA IN THE TRIPLES STORE. .. 14

D5.1 - Reference Platform Instantiation

PLATOON Contract No. GA 872592 Page 6 of 34

FIGURE 5: EXAMPLE OF CONFIGURATION FILE ILLUSTRATING THE EXECUTION OF THE SDM-

RDFIZER. ... 14

FIGURE 6: EXAMPLE OF DOCKER-COMPOSE.YML FILE ILLUSTRATING THE DOCKER COMPOSE FILE

USED FOR THE GENERATION OF THE DOCKER IMAGES THAT ARE REQUIRED FOR THE

EXECUTION OF THE PIPELINE. ... 15

FIGURE 7 - TRUE CONNECTOR ARCHITECTURE AND INTERACTION ... 16

FIGURE 8: PLATOON IDS VOCABULARY PROVIDER - IDS MESSAGES - DESCRIPTION REQUEST

MESSAGE ... 18

FIGURE 9: PLATOON IDS VOCABULARY PROVIDER GUI - HOME SCREEN 19

FIGURE 10: PLATOON IDS VOCABULARY PROVIDER – VISUALIZATION – NETWORK DIAGRAM

 ... 19

FIGURE 11: THE SANSA ECOSYSTEM ... 20

FIGURE 12: THE DIFFERENT MODULES OF SANSA .. 21

FIGURE 13: EDGE SCENARIO ARCHITECTURE .. 22

FIGURE 14: NON-EDGE SCENARIO ARCHITECTURE .. 23

FIGURE 15: DATASHARING SCENARIO OVERVIEW ... 23

FIGURE 16: DIFFERENCE BETWEEN DOCKER AND VIRTUALIZATION TECHNOLOGY [10] 25

FIGURE 17: A SIMPLE DOCKER-COMPOSE FILE .. 26

FIGURE 18: THE SWARMPIT UI [12] .. 26

FIGURE 19: SWARMPIT INITIALIZATION ... 27

FIGURE 20: SWARMPIT AFTER STARTUP .. 28

FIGURE 21: OVERVIEW OF THE SWARMPIT UI ... 29

FIGURE 22: DEPLOYING A STACK IN SWARMPIT .. 29

FIGURE 23: CREATING A STACK FILE IN SWARMPIT UI .. 30

FIGURE 24: AFTER DEPLOYMENT THE SERVICE IS LISTED IN THE UI .. 30

FIGURE 25: AFTER DEPLOYMENT THE SERVICE IS LISTED IN THE UI .. 32

FIGURE 26: VISUALIZATION TOOL AFTER CONFIGURATION ... 32

List of Tables

TABLE 1: TERMS AND ABBREVIATIONS ... 7

D5.1 - Reference Platform Instantiation

PLATOON Contract No. GA 872592 Page 7 of 34

Terms and abbreviations

Table 1: Terms and Abbreviations

API Application Programming Interface

CA Consortium Agreement / Certification Authority

CO Confidential

DAPS Dynamic Attribute Provisioning Service

DM Dissemination Manager

EC European Commission

EM Exploitation Manager

FQP Federated Query Processing

GA Grant Agreement

GAM General Assembly Meeting

HW Hardware

IOT Internet of Things

IDS International Data Spaces

IT Information Technology

PaaS Platform as a Service

PKI Public Key Infrastructure

PM Project Manager

PU Public

QA Quality Assurance

RE Restricted

SC Steering Committee

SLA Service Level Agreement

SaaS Software as a Service

SW Software

TM Technical Manager

WP Work package

WPL Work package Leader

D5.1 - Reference Platform Instantiation

PLATOON Contract No. GA 872592 Page 8 of 34

Executive Summary

This task provides a reference platform instantiation of the PLATOON reference architecture

defined in D2.1 (V1) and D2.5 (V2) using the Open-Source Components developed in WP2,

WP3 and WP4. The reference platform instantiation serves as a proof-of-concept for the

PLATOON reference architecture and also as a testbed for doing an integration test of the

different open-source components explained in D5.5.

This deliverable will briefly discuss the different components of the PLATOON reference

architecture. The deliverables D5.2, D5.3, and D5.4 will focus on different components in a

more detail manner.

This deliverable briefly introduces the 3 different testing scenarios that will be conducted in

deliverable D5.5. Also, it discusses the server hardware used to run the different components

of the reference architecture.

On a software level, we introduce and discuss Docker, Docker Compose, Docker Swarm, and

Swarmpit, which are integral parts of the deployment and support of the different PLATOON

software components.

The deliverable provides a step-by-step installation guide to enable system administrators to

setup and run the PLATOON reference architecture. For this, we provide detailed instructions

on how to install and configure Swarmpit. As an example, the installation and configuration

instructions of the simplified version of the Edge scenario are described. More details about the

deployment of individual components for the corresponding testing scenario can be found in

D5.5.

The resulting reference instantiation is open source. Hence, using the information provided in

this deliverable, interested companies can create a base setup of the PLATOON reference

architecture, ready for deployment of different building blocks and data analytics tools for

different use-cases. The reference platform instantiation discussed in this deliverable serves as

an essential first step for a successful integration with the PLATOON ecosystem.

D5.1 - Reference Platform Instantiation

PLATOON Contract No. GA 872592 Page 9 of 34

1 Introduction

The goal of this task is to provide a reference platform instantiation of the PLATOON reference

architecture. The PLATOON reference architecture, as defined in deliverable D2.1(V1) and

D2.5(V2), specifies the main building blocks, interfaces, interactions, and capabilities to enable

the interoperability between heterogeneous digital platforms and analytic tools in the energy

domain. The reference platform instantiation serves as a proof-of-concept for the PLATOON

reference architecture as well as a testbed for integration test of the different open-source

components explained in D5.5.

The PLATOON reference architecture consists of multiple components which interact together

to allow a seamless integration amongst heterogenous digital platforms that are implemented

using specific technologies to meet the requirements of the different large-scale pilots. The

different components will be discussed briefly in the next section, where an overview of the

reference architecture will be given. In this deliverable a high-level description of some open-

source components are provided that can be used for an open-source reference instantiation.

The deliverables D5.2, D5.3, and D5.4 will focus on the respective components in more detail.

Finally, D5.5 includes the installation and configuration instructions of individual components

for the corresponding integration testing scenarios inspired by the energy domain. These

integration-tested components will form the basis for the reference platform instantiation in this

deliverable.

For the reference platform instantiation, we use modern, enterprise-level server hardware to run

the different components of the PLATOON reference architecture. The chosen hardware

ensures that the reference platform instantiation and the tests performed on it are representative

of typical hardware scenarios present in the energy domain. In this deliverable, the details of

the hardware setup used throughout Working Package 5 will be discussed.

Due to the complexity of the PLATOON reference architecture and the many different

components involved, management and surveillance of the components can be a daunting task.

Therefore, we utilize the software solutions Docker and Swarmpit to assist system

administrators with the deployment and support of PLATOON software components. Docker

is a virtualization engine which allows developers to run software in so called containers. Each

component of the PLATOON reference architecture may consist of one or several such docker

containers. Swarmpit operates on top of Docker to facilitate the management of all the different

docker containers from the different components in the PLATOON reference architecture. For

this, Swarmpit provides an interface that visualizes the different containers and helps in

managing them. In this deliverable, we will discuss both Docker and Swarmpit and show their

important role in instantiating the PLATOON reference architecture.

In the next section, we start discussing the reference architecture and its components. In Section

4, the hardware specification of the server used for the reference architecture instantiation are

presented. Next, in Section 5, we go over the implementation details and discuss Docker and

Swarmpit in detail. We conclude the deliverable in Section 6.

2 Reference Architecture

In Work Package 5 (WP5) the PLATOON Reference Architecture is instantiated using the

open-source components developed in WP2, WP3 and WP4. This makes it possible to test the

interaction of the versatile and technically complex components with each other shown in the

figure below. The pipelines described in T.5.1, T.5.2, T.5.3, and T.5.4 are possible stacked

solutions that use the developed technologies.

D5.1 - Reference Platform Instantiation

PLATOON Contract No. GA 872592 Page 10 of 34

Figure 1: PLATOON Reference Architecture

Apart from the Reference Architecture and the developed open-source components, the

reference platform developed in this task makes use of the common APIs, data models and

dockers specifications defined in deliverables D2.2/D2.6, D2.3/D2.7 and D4.1, respectively. In

addition, the reference instantiation complies with the data security, privacy and sovereignty

layer defined in WP3.

In the reference instantiation explained in this task, the different components are containerized

and communicated with each other through REST API.

Regarding the semantic pipeline, the data is converted into Knowledge Graph data by the

Semantic Adapter. These Knowledge Graphs can be used with the help of Federated Query

Processing Engines. Relevant data can be retrieved through common SPARQL queries. This

Knowledge Graph data can also be used by data analytics components, which in turn can be

visualized by the data analytics dashboard. The semantic annotations are defined using the

Semantic Data model from task T.2.3. The semantic pipeline is explained in more detail in

deliverables D5.2 and D5.3.

Regarding the data security, privacy and sovereignty layer, the open-source IDS connector,

Metadata registry and IDS vocabulary provider are used to ensure that confidential data

exchange takes place. More details of the data exchange approaches can be found in the

deliverables of WP3.

D5.1 - Reference Platform Instantiation

PLATOON Contract No. GA 872592 Page 11 of 34

Regarding the intelligence layer, open-source data analytics tools and visualisation dashboards

are implemented. Both are implemented for real-time (edge) and batch (non-edge) scenarios.

More details about the Data Analytic Toolbox and the Analytic Dashboards are provided in

deliverables D5.2 and D5.4.

2.1 IOT Connectors

As detailed in the deliverable D2.2 - PLATOON-WP2-D2.2-Open API Specifications - the IoT

Connector is in charge of transmitting the raw data coming from the device to the virtual entity

representation at the Data Management Layer; sending commands or actions request to an

actuator device; mapping of device and its features to a virtual entity with related attributes and

metadata. IoT Connectors should also be able to deal with security aspects (authentication and

authorization of the channel) and data sovereignty (IDS) aspects.

In particular the IoT Connector module is responsible of some main tasks:

• The IoT Connector must know the state of each device managed by it. It is also

responsible of verifying the health of the connection to the device. If the connection

with some device is lost, the IoT Connector should be able to generate alarms for other

components in the system.

• IoT Connector must store and manage metadata about the device that could be used to

enrich the data obtained from the device, for example, localization and device

characteristics as measure precision.

• Connector must manage the security of the communication with the devices. This

mainly focused on the authentication of devices and authorization to manage which

devices can connect with which further data processors in the system. But this security

has to be also managed from the device perspective, that is, the device needs to know

that it is sending data to the right IoT Connector within a secure channel, for example,

avoiding man in the middle attacks.

• IoT Connectors must be able to send commands to devices with such a capacity. That

is, the IoT Connector will act as a gateway for the rest of the component in the

architecture avoiding the complexity of knowing low level protocols. It will translate

data from the semantic adapters to the specific protocols used by the supported devices.

• IoT Connector must be able to collect data from the devices, transform that data to the

PLATOON data model defined in D2.3. In this way, data will be able to be used in other

modules of the architecture without the need to know the internal data model of each

device. Actually, this transformation rules should be easy to develop and deploy. New

devices or changes in the firmware of existing devices will add the need of deploy new

data transformation rules with the minimum impact for the whole system or other device

connections. The collection of data must include de capacity to define data verification

rules that ensure that the data received have a minimum of quality.

2.2 Semantic Adapters and Federated Querying

The knowledge base creation pipeline presented in Figure 2 integrates a semantic adapter and

a federated query processing; it follows the PLATOON reference architecture presented in

Figure 1. This pipeline is agonistic of the query engine used to implement the semantic

connector and the federated query processing engine. The semantic adapter converts data

sources in different formats, e.g., CSV, JSON or relational databases, into RDF; this conversion

is guided by mapping rules specified in a mapping language, e.g., SPARQL-Generate or RDF

D5.1 - Reference Platform Instantiation

PLATOON Contract No. GA 872592 Page 12 of 34

Mapping Language (RML). These rules define declaratively concepts (i.e., classes and

properties) in the PLATOON semantic data models (presented in D2.3) in terms of data

collected from the PLATOON data sources. As a result, during the execution of these rules, the

semantic adapter populates classes and properties in a unified knowledge base. Then, the

pipeline uploads this unified knowledge base into a federation of SPARQL endpoints (e.g., in

Virtuoso or Fuseki). The federated query processing engine provides an interface to these

endpoints; it enables users to explore the knowledge graph and retrieve the answers to a

SPARQL query. Two implementations of the pipeline are available; one resorts to SDM-

RDFizer and the other one to SPARQL-Generate. SDM-RDFizer alternative is further

explained in the following subsection and the corresponding integration tests are reported as

part of D5.5. SPARQL-Generate alternative is covered as part of D5.2.

Figure 2: Knowledge Graph Creation Pipeline

2.2.1 A Semantic Adapter based on SDM-RDFizer

The pipeline is implemented as a bash script that executes a series of Docker images, each one

implements a component of the pipeline. As a result, the pipeline is comprised of three Docker

images: a) the SDM-RDFizer image; b) the Virtuoso images; and c) the FQP image. This

pipeline is available in a GitHub repository1 and uses dockerized components.

1 https://github.com/SDM-TIB/PLATOONPipeline

https://github.com/SDM-TIB/PLATOONPipeline

D5.1 - Reference Platform Instantiation

PLATOON Contract No. GA 872592 Page 13 of 34

Figure 3: The PLATOON Pipeline

The aforementioned GitHub repository contains required files and scripts for the execution of

the PLATOON pipeline. These components are:

• Scripts: is a folder containing the scripts that transform mapping files and their

corresponding data sources into RDF data, which is then loaded into the triple store

(Virtuoso). These scripts are:

o Virtuoso-script.sh: used to remotely connect and load data using the isql-v tool of

Virtuoso.

o Load_to_virtuoso.py: executes the virtuoso-script.sh to upload transformed RDF

data to the Virtuoso triple store.

o Transform_and_load.py: performs both the transformation of raw data into RDF

data by invoking the SDM-RDFizer and uploads the data into a triple store by using

virtuoso-script.sh.

o Mapping_parser.py: generates the input file necessary for the execution of FQP by

associating the classes from the mapping files with its corresponding predicates and

endpoint that contains the RDF data.

D5.1 - Reference Platform Instantiation

PLATOON Contract No. GA 872592 Page 14 of 34

Figure 4: Portion of transform_and_load.py illustrating the uploading of RDF data in the triples store.

• Configuration_files: is a folder that contains the configuration files that are necessary for

the execution of the SDM-RDFizer and mapping_parser.py script.

Figure 5: Example of Configuration File illustrating the execution of the SDM-RDFizer.

• Docker-compose.yml: docker compose creates the docker images of the SDM-RDFizer [1],

DeTrusty [2], and Virtuoso [3].

D5.1 - Reference Platform Instantiation

PLATOON Contract No. GA 872592 Page 15 of 34

Figure 6: Example of docker-compose.yml file illustrating the docker compose file used for the generation

of the docker images that are required for the execution of the Pipeline.

DeTrusty (a.k.a. FQP) is a query engine that implements federated query processing against
SPARQL endpoints. It decomposes the input query into star-shaped sub-queries, i.e., all triple
patterns in a sub-query share the same subject. If an RDF type statement is present in a sub-
query, it will be used to identify the sources that contribute to the sub-query in question. If no
such statement is present, DeTrusty selects all sources that contribute to RDF classes that
contain all predicates of the sub-query. This allows DeTrusty to minimize the number of
contacted SPARQL endpoints. Each sub-query is executed over the previously selected sources
for the sub-query. The partial results retrieved from the endpoints are combined at the query
engine level using non-blocking physical operators. DeTrusty creates bushy plans in order to
speed up the query execution. These features enable DeTrusty to continuously generate
complete and sound query results while minimizing the number of contacted endpoints and

D5.1 - Reference Platform Instantiation

PLATOON Contract No. GA 872592 Page 16 of 34

query execution time. The current version of DeTrusty is capable of executing SPARQL
SELECT queries. The SERVICE clause from SPARQL 1.1 is also implemented. Some
SPARQL 1.1 features are not yet implemented, e.g., GROUP BY and aggregate functions. FQP
can be run in a Docker container. After providing DeTrusty with the semantic source
description of the set of SPARQL endpoints, it can be used via its HTTP API as if it was a
regular SPARQL endpoint. Deliverable D2.8 provides a detailed description of the federated
query engines integrated into the PLATOON framework; it also reports on the results of the
performance empirical evaluation of DeTrusty on Pilot 2a knowledge base.

2.3 IDS Connectors

In PLATOON the IDS connector is the component allowing the different pilot to exchange,

share and process digital content. At the same time, the Connector ensures that the data

sovereignty of the data owner is always guaranteed. The reference implementation of the IDS

connector adopted in PLATOON is the TRUE (TRUsted Engineering) connector: it is an open-

source implementation, developed by Engineering, that has been reused and extended in order

to fit the specific project needs.

Figure 7 - TRUE connector architecture and interaction

The Figure 7 shows the main components of the TRUE connector and the interactions among

two connectors that exchange data. Following a description of these components:

• Execution Core Container (ECC) is in charge of (1) the data exchange using

HTTP/HTTPS, WS over HTTPS or IDSCP2, taking advantage of the IDS Information

Model to represent the data, (2) the interactions with an external Identity Provider to

require and validate token, (3) the communication with an IDS Broker for managing the

information and with the Clearing House for registering the transactions.

D5.1 - Reference Platform Instantiation

PLATOON Contract No. GA 872592 Page 17 of 34

• Data APP: this component represents a trivial data application build to generate and/or

consume data on top of the Execution Core Container.

• Usage-Control Application (UC APP): a component in charge of applying usage

control policies to the data.

As described in the above figure the basic communication flow between two connectors (used

by a Data Provider and a Data Consumer) can be resumed in the following steps.

1. the Consumer receive a data request to its P endpoint, it forwards the request to its

internal Execution Core Container (A endpoint)

2. The Consumer’s ECC receives the message from its Data APP,

3. The Consumer’s ECC interacts with an external Identity Provider to retrieve the token

of the Consumer and

4. The Consumer’s ECC sends the appropriate IDS message to the Provider’s ECC using

one of the provided communication channels (B endpoint).

5. The Provider’s ECC receives the message and validates the token against the Identity

provider,

6. ECC retrieves the actual data from its Data APP (F endpoint)

7. Provider ECC returns data to the Consumer’s ECC

8. Consumer’s ECC processes the response, applies the usage control policies and forward

the data to the original requester.

It is important to underline that every transaction is logged into the Clearing House (C

endpoints).

The TRUE connector in PLATOON has been extended to be integrated with CaPe suite an ICT

suite for a consent-based user-centric personal data management that acts as an intermediary

and as a tool of communication between data subjects and controllers/processors, supporting

the generation and management of dynamic consents. Also, it has been developed a new, open-

source, Data Usage Control module as an evolution of the open-source IDS Dataspace

Connector that supports usage policies written in the IDS Usage Control Language based on

ODRL. More information about these developments can be found in deliverable D3.4

The implementation of the TRUE connector is available in open source in the PLATOON

Github repository (https://github.com/PLATOONProject/true-connector).

2.4 Metadata Registry

The Metadata Registry is a registry for datasets and apps/data analytics tools and is the main

component of PLATOON Marketplace. It can be used to register, update, or unregister the

Connector or resource (Resource or AppResource) metadata. Self-description of the Metadata

Registry is also available, and one can query for any information provided in it. The following

list shows the main functions of the Metadata Registry:

• Description Request: Gets the self-description of the Metadata Registry.
• Register/Update Connector: Registers the Connector if it doesn't exist in the Metadata

Registry or update the Connector if it exists. Users can also include Resources (metadata

of the data) while registering a Connector.
• Unregister Connector: Unregisters the Connector from the Metadata Registry.
• Update Resource: Updates the information of a particular Resource of a Connector.
• Unregister Resource: Removes a particular Resource from a Connector.
• Register App: Registers metadata of an App in the Resource Catalog of the Connector.

D5.1 - Reference Platform Instantiation

PLATOON Contract No. GA 872592 Page 18 of 34

• Unregister App: Unregisters metadata of an App from the Resource Catalog of the

Connector.
• Query: Queries the SPARQL triples in Fuseki triple store.

Note that all data in the Metadata Registry is metadata only. The register, update and unregister

of connectors, Resource, and AppResource mentioned above are also related to metadata.

The implementation of the meta data registry is available in open source in the PLATOON

Github repository (https://github.com/PLATOONProject/Metadata-Registry).

2.5 IDS Vocabulary Provider

In WP3 an IDS Vocabulary Provider was developed. This is a central component that manages

all the vocabularies (ontologies, reference data models, metadata elements), which can annotate

and describe datasets and data analytics tools.

The IDS Vocabulary Provider plays an essential role within the PLATOON reference

architecture as it is the link between the Data Governance, Security, Privacy and Sovereignty

layer (based on IDS reference architecture) and the Interoperability layer formed. The

vocabulary provider provides direct Machine to Machine communication allowing to query the

different vocabularies and exchange metadata through the IDS connectors. Several IDS

messages have been implemented to allow to register to the vocabulary provider and send

queries. The figure below shows an IDS query message:

Figure 8: PLATOON IDS Vocabulary Provider - IDS Messages - Description Request Message

In addition, the Vocabulary Provider has a Graphical User Interface (GUI), where users can

manage vocabularies (upload/upgrade/delete), search for specific terms, visualize the

vocabularies in a network graph and execute SPARQL queries.

D5.1 - Reference Platform Instantiation

PLATOON Contract No. GA 872592 Page 19 of 34

Figure 9: PLATOON IDS Vocabulary Provider GUI - Home Screen

Figure 10: PLATOON IDS Vocabulary Provider – Visualization – Network Diagram

The developed solution is open source and it is available in:

https://github.com/PLATOONProject/PLATOON_IDS-Vocabulary-Provider

More detailed explanation about the available functionalities and configuration instructions are

defined in deliverable D3.5.

2.6 Data Analytics Tools

For data analytics, there are two different tools available. The first tool is a containerized demo

tool following the specification defined in D4.1 which implements REST APIs as defined in

D2.2. Thanks to the use of these REST APIs, the tool can be replaced by any other data analytic

tool without the need to implement a completely new pipeline. In addition to this first demo

tool, a second tool is available which focuses on the requirements of pilot 3A. This second tool

D5.1 - Reference Platform Instantiation

PLATOON Contract No. GA 872592 Page 20 of 34

is further explained in deliverable D5.2. In both tools, SANSA is an integral part which will be

discussed in the following.

In WP4 and WP5, the Scalable Big Semantic Analytics Stack (SANSA) was further developed.

The enhancements include generic tools that can be used for classification, clustering, and

anomaly detection. In the context of the Platoon use cases, the pipelines described in the

proposal were also extended by the option of regression in order to implement regression-based

baseline forecasting. The following tools were developed for this purpose:

• DistSim [4]
o Similarity Estimation as backbone for clustering and unsupervised

classification [5]
o Machine Learning pipeline feature extraction on Knowledge Graphs [6]
o Generic downstream machine learning pipelines for RDF Knowledge Graphs

• DistAD [7]
o Numeric Outlier detection within RDF KG

• Semantic Web Analysis with Flavour of Micro-Services [8]
o Rest Interface for SANSA and Spark based Pipelines

Figure 11: The SANSA ecosystem

As Part of WP5, especially T.5.1 and T.5.5, we evaluated within a Non-Edge Scenario these

PLATOON related generic analytic modules of SANSA. As SANSA builds on top of Apache

Spark for distributed Processing and HDFS for Data Management and Storage, the respective

containers include these modules. In addition, we build on top of Apache Jena 4.x and Java 11.

For the REST Management, we use Apache Livy to propose a rest interface for handling Rest

interactions with the analytic pipelines. The Details of Rest Exposure can be found in [8] while

D5.1 - Reference Platform Instantiation

PLATOON Contract No. GA 872592 Page 21 of 34

the respective Regression pipeline can be found in [6]. The results are stored either in Tabular

data which suits the requirements of PyNalia or can be stored as native Semantic data.

List of the modules which are evaluated in the context of SANSA are:

• Apache Livy
• Apache Spark (incl. MLlib)
• Apache Jena
• Hadoop File System (HDFS)
• HUE
• Apache Zeppelin

Figure 12: The different modules of SANSA

2.7 Data Analytics Dashboard

In task T5.4 two open-source alternatives of data analytics dashboards have been developed

and implemented:

1. Batch-data Visualisation Dashboard based on the Open-Source Generic Visualisation

Toolbox developed in task T4.6.

2. Real-time Visualisation Dashboard based on existing open-source solutions such as

Grafana.

The target user of the tool are energy experts with high domain knowledge but low coding

skills. Thus, the Dashboard has been defined to be intuitive and user-friendly providing a

collection of reusable visualization templates/chart that can be easily integrated into customer-

oriented cloud-based dashboard for predictive analytics and insights analysis.

On the one hand, the Batch visualisation dashboard is an open-source dashboard based on the

Generic Visualisation Toolbox developed in task T4.6. The target user of the tool are energy

experts with high domain knowledge but low coding skills. Thus, an intuitive and simple

D5.1 - Reference Platform Instantiation

PLATOON Contract No. GA 872592 Page 22 of 34

Graphical User Interface (GUI) has been defined in order to configure and visualize the

dashboards.

On the other hand, the Real-time Dashboard visualisation dashboard is an open-source solution

which integrates a series of existing open-source tools that allow users to view graphics on the

screen, representations of real time data, events and process prompts, as well as historical data,

offering a set of standard display panels, screens, and charts.

More details about the development, functionalities and configuration of the dashboard are

provided in T5.4.

3 Testing Scenarios

We conceived different scenarios for the purposes of integration testing which is documented

in D5.5. The first scenario for our tests is the so-called Edge-Scenario. The focus of the scenario

is to stream data originating from IoT devices or edge computing devices and transform and

store them in dedicated databases. The data is then processed and visualized. The second

scenario, the so-called Non-Edge-Scenario is focused on batch data using static sources. The

data is transformed into RDF and can be queried using a federated query engine. Again, the

data is processed and finally visualized. The final scenario, the so-called data-sharing scenario,

focuses on data exchange using IDS components.

3.1 Edge-Scenario

The Edge-Scenario consumes data coming from edge computing devices which is then stored

into a database for further processing. The data in this scenario is time-series data. Once

processed, the outcome of the processing can be visualized by an appropriate component. The

following figure illustrates the architecture of the Edge-Scenario.

Figure 13: Edge Scenario architecture

D5.1 - Reference Platform Instantiation

PLATOON Contract No. GA 872592 Page 23 of 34

3.2 Non-Edge-Scenario

This scenario focuses on data sources containing static data. In this scenario, we use RDFizer

[1] as semantic adaptor to transform the data into RDF. This makes the data available for

querying over a federated query engine. The analytics part is done by SANSA as discussed in

Section 2.6. Finally, the result of SANSA is visualized. The following figure shows the

architecture of the Non-Edge-Scenario.

Figure 14: Non-Edge Scenario architecture

3.3 Data-Sharing Scenario

In this scenario, the interaction between the Metadata Registry, two TRUE connectors and the

Vocabulary Provider is tested. The scenario tests the sharing of data between the two

connectors using JSON. The following figure gives an overview of the architecture.

Figure 15: Datasharing scenario overview

Deliverable D5.5 contains dedicated configuration and setup details for implementing the

specific testing scenarios and the corresponding integrations test results.

D5.1 - Reference Platform Instantiation

PLATOON Contract No. GA 872592 Page 24 of 34

4 Hardware Specification

In this section, we give an overview of the hardware specifications used for the evaluation of

the reference architecture. Specific considerations have been given to the fact that a lot of these

containers have to be instantiated simultaneously to support the different scenarios.

Mainboard Supermicro X11DPG-QT-CPU

CPU 2x: Xeon® Scalable Processor “Cascade Lake”

Silver 4214R, 2.40 GHz, 12-Core, Socket 3647, 16,5 MB L3

Cache 2400 MHz, 3x UPI, Tcase 87°C

RAM 192GB (12x 16GB; 3 Channel with each 4 16GB DIMMs) DDR4

/ PC2933

SAS-Controller SAS2/SAT3 RAID-Controller Card LSI MEGARAID

MEGARAID SAS 9361-8I

SGL, 8 Port LSI00417 (05-25420-08)

Hard Drives 6x: 4TB HD, Seagate Exos E 7E8 4TB, 512n, SAS 12Gb/s

(ST4000NM0025)

GPU 4x: PCIe x16 Graphics Card NVIDIA® GeForce RTX 2080 Super

8GB GDDR6

NVIDIA® Turing GPU Architecture:

2944 CUDA Cores (single precision), 57 Tensor Cores

Formfactor: 2 PCI slots

Video Memory: 8 GB GDDR6

Reference: ASUS TURBO-RTX2080S-8G-EVO

Network Interface 2x 10 GBASE-T onboard (RJ45),

IPMI 2.0 Management port onboard (RJ45)

1x Dual port Supermicro AOC-STG-I2T, 2x 10GB-LAN, RJ45

5 Implementation Details

As explained in WP2 deliverables and in D4.1, PLATOON components should be interoperable

and deployable in any environment that adheres to the PLATOON reference architecture, APIs,

and data models. This criterion can be met by packaging the software into containers. A

container is a standardized executable software unit that contains the source code as well as all

its dependencies or the associated packages. The containerized program is separated from its

surroundings. As a result, a container is simple to ship and deploy into diverse environments,

even if they differ from those used during development. Docker [9] is the container technology

used throughout the PLATOON project.

D5.1 - Reference Platform Instantiation

PLATOON Contract No. GA 872592 Page 25 of 34

5.1 Docker

Docker is a collection of platform as a service (PaaS) solutions that provide software in

containers via OS-level virtualization. Among the several container technologies, Docker is

extensively used and interoperable with all major providers of local operating systems and

cloud computing platforms, and it has established a number of industry standards. Docker

technology is not open source; however, it is available for free (under the Apache License 2.0).

Furthermore, Docker has a large user base and an active community, and it has been embraced

by many businesses. There is now an enormous database of Docker images accessible, as well

as rich documentation to help developers throughout various Docker tasks. A Docker image is

created by following the instructions in a text file called a Dockerfile. The Dockerfile also

includes the container's primary command of execution or the path to a shell script containing

the execution instructions. The image is composed of numerous layers, including a basic

operating system layer as well as levels holding run times and configuration files. Containers

can execute as standalone executables from the docker image. Figure 16 shows the difference

between Docker and Virtualization Technology.

Figure 16: Difference between Docker and Virtualization Technology [10]

5.2 Docker Compose

Docker Compose is a tool that allows you to define and operate Docker applications consisting

of multiple Docker containers. It configures the application's services using YAML files and

executes the construction and startup of all containers with a single command. The docker-

compose CLI program allows users to conduct tasks on numerous containers at the same time,

such as generating images, scaling containers, restarting stopped containers, and more. Image

manipulation commands and user-interactive options are irrelevant in Docker Compose since

they only address one container. The docker-compose.yml file is used to specify the services of

an application and contains numerous configuration settings. The build option, for example,

specifies configuration settings such as the Dockerfile location, while the command option

allows one to change default Docker commands, among other things. A simple docker-compose

file might look then one in Figure 17.

D5.1 - Reference Platform Instantiation

PLATOON Contract No. GA 872592 Page 26 of 34

Figure 17: A simple Docker-Compose file

5.3 Docker Swarm

Docker Swarm provides native Docker container clustering capability, converting a set of

Docker engines into a single virtual Docker engine. Swarm mode is incorporated with Docker

Engine in Docker 1.12 and later. Users may use the docker swarm CLI program to start Swarm

containers, create discovery tokens, list nodes in the cluster, and more. The docker node CLI

utility lets users perform commands to manage nodes in a swarm, such as listing nodes,

updating nodes, and deleting nodes from the swarm. Docker uses the Raft consensus

mechanism to control swarms.

5.4 Swarmpit

Swarmpit [11] is a user-friendly interface for Docker Swarm clusters. Using Swarmpit, we can

manage docker stacks, services, secrets, volumes, networks, and docker nodes. Also, we can

manage swarm clusters using the UI. The following image depicts the Swarmpit UI.

Figure 18: The Swarmpit UI [12]

4.4.1 Installing Swarmpit

To install Swarmpit, the following steps need to be done:

1. Install docker on the server
2. Start the docker service

For installing docker the following steps need to be done:

D5.1 - Reference Platform Instantiation

PLATOON Contract No. GA 872592 Page 27 of 34

$ sudo apt-get update

$ sudo apt-get install docker-ce docker-ce-cli containerd.io

After installing docker, one can test if Docker is working via following command:

$ sudo docker run hello-world

This command downloads and executes a test image in a container. When the container is

executed, it prints a message and then exits.

After installing docker, we need to enable swarm mode in docker via:

$ sudo docker swarm init

Figure 19: Swarmpit initialization

The final step is to run Swarmpit itself as a docker container:

$ docker run -it --rm --name swarmpit-installer –volume

 /var/run/docker.sock:/var/run/docker.sock

swarmpit/install:1.9

D5.1 - Reference Platform Instantiation

PLATOON Contract No. GA 872592 Page 28 of 34

Now Swarmpit runs on port 888 and you can access Swarmpit under http://localhost:888

Figure 20: Swarmpit after startup

Swampit consists of mainly 4 components:

• app: Swarmpit
• agent: Swarmpit agent
• db: CouchDB (Application data)
• influxdb: InfluxDB (Cluster statistics)

Couch DB contains users and stack files, configs, and secrets. When we want to restore

Swarmpit, we need to make a backup of this database, which is inside a docker volume

located at /var/lib/docker/volumes.

http://localhost:888/
https://github.com/swarmpit/agent

D5.1 - Reference Platform Instantiation

PLATOON Contract No. GA 872592 Page 29 of 34

Figure 21: Overview of the Swarmpit UI

To deploy a stack in Swarmpit, go to UI → Applications → Stacks → New Stack

Figure 22: Deploying a stack in Swarmpit

In this stage the user can copy-paste the content of the docker-compose.yml file. For the

mentioned scenarios in Section 3, the docker-compose files have been defined in D5.5.

D5.1 - Reference Platform Instantiation

PLATOON Contract No. GA 872592 Page 30 of 34

Figure 23: Creating a stack file in Swarmpit UI

Finally, press deploy button:

Figure 24: After deployment the service is listed in the UI

As an example, the simplified version of the Edge scenario will be deployed in Swarmpit. More

details about the deployment and individual components can be found in D5.5.

The Edge scenario contains three components; edge data provider, database, and visualizer.

Following docker-compose.yml file chains the Edge scenario components:

version: '3.6'

services:

 influxdb:

 image: influxdb:1.8.10

 container_name: influxdb

 restart: always

 environment:

 - INFLUXDB_DB=influx

D5.1 - Reference Platform Instantiation

PLATOON Contract No. GA 872592 Page 31 of 34

 - INFLUXDB_ADMIN_USER=admin

 - AUTH_ENABLED=false

 ports:

 - '8086:8086'

 grafana:

 image: grafana/grafana

 container_name: grafana-server

 restart: always

 depends_on:

 - influxdb

 environment:

 - GF_SECURITY_ADMIN_USER=admin

 - GF_SECURITY_ADMIN_PASSWORD=admin

 - GF_INSTALL_PLUGINS=

 links:

 - influxdb

 ports:

 - '3000:3000'

 user: "root"

 unittes_container:

 image: andrejcampa/unittest_edge

 environment:

 - INFLUXDB_ADMIN_USER=admin

 - INFLUXDB_DB=influx

 - INFLUX_DB_IP=influxdb

 - INFLUXDB_ADMIN_PASSWORD=password

 ports:

 - "8087:8086"

 depends_on:

 - influxdb

To deploy this, as explained, the user can visit the Swarmpit UI and select Applications →

Stacks → New Stack. By copy pasting the above content and selecting a name for the stack,

the user can press the deploy button. After pressing deploy button, Swarmpit will deploy the

mentioned components and will show the status of each component as follows:

D5.1 - Reference Platform Instantiation

PLATOON Contract No. GA 872592 Page 32 of 34

Figure 25: After deployment the service is listed in the UI

To validate that the deployment was successful, the user can visit http://localhost:3000 which

shows the visualization. The user needs to configure visualization tool to see the data (all the

details have been explained in D5.5. For more information, please check D5.5). The following

figure shows the data which are being delivered from edge node every minute.

Figure 26: Visualization tool after configuration

The three mentioned test scenarios in Section 3 will be deployed and tested in D5.5 where it is

explained how to deploy them via Swarmpit.

http://localhost:3000/

D5.1 - Reference Platform Instantiation

PLATOON Contract No. GA 872592 Page 33 of 34

6 Conclusions

In this deliverable, we provided a reference platform instantiation of the PLATOON reference

architecture which serves as a proof-of-concept for the PLATOON reference architecture.

We introduced the components and hardware used for the platform instantiation. The provided

hardware specifications serve as a reference point for choosing appropriate hardware

components for a PLATOON setup on an enterprise infrastructure.

In order to guarantee the interoperability and flexibility of the PLATOON reference architecture

instantiation, we developed the reference platform instantiation based on Swarmpit. To enable

system administrators to setup a PLATOON instantiation on their own infrastructure, we

provided step-by-step installation details on how to setup Swarmpit and the required

dependencies. Once installed and running, the corresponding docker-compose.yml files can be

used to deploy the respective components required.

As a result of this task two major outcomes are obtained. On the one hand, the developed

reference platform instantiation serves as a testbed for doing an integration test in D5.5 of the

different open-source components developed in WP2, WP3 and WP4 before their final

implementation and validation in large scale pilots in WP6. On the other hand, with the

information provided in this deliverable, companies interested in joining the ecosystem can

setup a base environment for future deployment of different components. Thanks to the modular

nature of the different components, the PLATOON reference architecture can be implemented

in different ways adapting to the circumstances of the respective company. As such, the

reference platform instantiation serves as an entry point and main building block for a

successful start in using PLATOON.

7 References

[1] Scientific Data Management Group at TIB, “SDM-TIB/SDM-RDFizer,” 2022. [Online].

Available: https://github.com/SDM-TIB/SDM-RDFizer. [Accessed 27 February 2022].

[2] Scientific Data Management Group at TIB, “SDM-TIB/DeTrusty,” 2022. [Online].

Available: https://github.com/SDM-TIB/DeTrusty. [Accessed 27 February 2022].

[3] OpenLink Software, “OpenLink Software: Virtuoso Homepage,” [Online]. Available:

https://virtuoso.openlinksw.com/. [Accessed 25 March 2022].

[4] C. F. Draschner, J. Lehmann and H. Jabeen, “DistSim - Scalable Distributed in-Memory

Semantic Similarity Estimation for RDF Knowledge Graphs,” in 2021 IEEE 15th

International Conference on Semantic Computing (ICSC), 2021.

[5] F. Bakhshandegan Moghaddam, C. Draschner, J. Lehmann and H. Jabeen,

“Literal2Feature: An Automatic Scalable RDF Graph Feature Extractor,” in

Proceedings of the 17th International Conference on Semantic Systems, SEMANTICS

2021, 2021.

[6] C. F. Draschner, C. Stadler, F. Bakhshandegan Moghaddam, J. Lehmann and H. Jabeen,

“DistRDF2ML - Scalable Distributed In-Memory Machine Learning Pipelines for RDF

Knowledge Graphs,” in Proceedings of the 30th ACM International Conference on

Information & Knowledge Management, 2021.

D5.1 - Reference Platform Instantiation

PLATOON Contract No. GA 872592 Page 34 of 34

[7] F. Bakhshandegan Moghaddam, J. Lehmann and H. Jabeen, “DistAD: A Distributed

Generic Anomaly Detection Framework over Large KGs,” 2022. [Online]. Available:

https://hajirajabeen.github.io/publications/ICSC_2022_DistAnomalies_CR.pdf.

[Accessed 18 March 2022].

[8] F. Bakhshandegan Moghaddam, C. F. Draschner, J. Lehmann and H. Jabeen, “Semantic

Web Analysis with Flavor of Micro-Services,” in LAMBDA Big Data Analytics Summer

School. Doctoral Workshop, 2021 forthcoming.

[9] Docker, Inc., “docker,” 2021. [Online]. Available: https://www.docker.com. [Accessed

17 December 2021].

[10] A. Heddings, “What Does Docker Do, and When Should You Use It?,” 24 November

2020. [Online]. Available: https://www.cloudsavvyit.com/490/what-does-docker-do-

and-when-should-you-use-it/. [Accessed 27 February 2022].

[11] Topmonks, “Swarmpit. Operate your docker infrastructure like a champ.,” 2020.

[Online]. Available: https://swarmpit.io. [Accessed 27 February 2022].

[12] The Swarmpit contributors, “Swarmpit GitHub Page,” 2021. [Online]. Available:

https://github.com/swarmpit/swarmpit. [Accessed 27 February 2022].

