
Grant Agreement N° 872592

Deliverable D6.10-V2 D6.5Evaluation and Validation Report

Contractual delivery date: M36 Actual delivery date: 31/12/2022 Responsible partner: TECN, Spain

Project Title	PLATOON – Digital Platform and Analytic Tools for Energy
Deliverable number	D6.10
Deliverable title	Evaluation and Validation Report
Author(s):	Erik Maqueda
Responsible Partner:	TECN
Date:	31/12/2022
Nature	R
Distribution level (CO, PU):	PU
Work package number	WP6 – Large Scale Pilot Implementation and Validation

Work Package Leader	VUB
Abstract:	This report summarises the preliminary validation results of the different components developed in WP2, WP3 and WP4
	for all the pilots and corresponding use cases. The validation is performed based on the KPIs identified in the validation
	plan as per explained in deliverable D6.6. This deliverable is the second version of deliverable D6.5 which was submitted in M30 and includes the updated and missing results
	evaluated after the V1 validation.
Keyword List:	Validation, KPIs, Impact assessment, Large Scale Pilots, Use cases.

The research leading to these results has received funding from the European Community's Horizon 2020 Work Programme (H2020) under grant agreement no 872592.

This report reflects the views only of the authors and does not represent the opinion of the European Commission, and the European Commission is not responsible or liable for any use that may be made of the information contained therein.

Editor(s):	TECN
Contributor(s):	VUB, IMP, CS, SAM, IND, ENGIE, PI, ENG, ROM, SIS, PDM and IAIS.
Reviewer(s):	Jan Helsen (VUB) Philippe Calvez (ENGIE)
Approved by:	Jan Helsen (VUB) Philippe Calvez (ENGIE)
Recommended/mandatory readers:	WP6 partners and WP8 and WP9 task leaders.

Document Description

Version	Date	Modifications Introduced		
VEISION	Date	Modification Reason	Modified by	
V.01	31/03/2022	ТОС	Erik Maqueda	
V1.0	02/06/2022	Executive summary, introduction and general information for pilots. Added validation results from TECN for Pilot 1A, 2B and 3C	Erik Maqueda	
V1.1	20/06/2022	Added missing information from rest of the pilots.	VUB, IMP, CS, SAM, IND, ENGIE, PI, ENG, ROM, SIS, PDM and IAIS.	
V1.2	30/06/2022	Amendments after internal review	Erik Maqueda	
V2.0	25/11/2022	Updates for pilot 3B-PI	Valeria Di Pasquale	
V2.1	30/11/2022	Updates for pilot 1A and 2B and 3C	Xavier Chesterman, Adrià Serra, Eduardo Jimenez, Mikel Fernandez, Diana Manjarres, Ainhoa Pujana, Asier Gonzalez and Jorge Menoyo	
V2.2	02/12/2022	Updates for pilot 1A and 2B	Xavier Chesterman, Adrià Serra, Eduardo Jimenez and Mikel Fernandez	
V2.3	15/12/2022	Updates for missing pilots and common components	Valentina Janev, Lilia Bouchendoka, Patrick Maurelli, Adelaida Lejarazu, Borja Tellado, Marco Musetta and Tanseem Tazeen Rashid	

Executive Summary

This report summarises the evidence and analysis of the preliminary validation results of the different components developed in WP2, WP3 and WP4 collected upon the execution of the large-scale pilots for all sites and use cases. The validation is performed based on the KPIs identified in the validation plan comparing them to the defined targets as per explained in deliverable D6.6. The validation report collates the conclusions from all stakeholders involved in the different pilots. Also, it contains the validation results of the PLATOON Common components which are cross-pilot. Finally, in the conclusions section an overall evaluation is done including the identification of the main pending aspects and risks.

This deliverable is the second version of deliverable D6.5 which was submitted in M30 and includes the updated and missing results evaluated after the V1 validation.

Table of Contents

EXEC		SUMMARY	5
TABLE OF CONTENTS			
LIST	OF FIGU	IRES	8
LIST	OF TABI	LES	. 10
LIST	OF TERM	MS AND ABBREVIATIONS	. 12
1.	INTROI	DUCTION	. 13
2.		LA EVALUATION & VALIDATION REPORT	
Ζ.			
	2.1	Introduction	
	2.2	LLUC-1A-01-Predictive maintenance of wind turbine electrical drivetrain components	
	2.2.1	Evaluation and Validation	
	2.3	Conclusion	. 44
3.	PILOT 2	2A EVALUATION & VALIDATION REPORT	. 45
	3.1	Introduction	. 45
	3.2	LLUC-2A-03-Load Forecasting	. 45
	3.2.1	Evaluation and Validation	. 46
	3.3	LLUC-2A-04-RES Production Forecasting	. 47
	3.3.1	Evaluation and Validation	. 48
	3.4	LLUC-2A-05-RES effect calculation	. 49
	3.4.1	Evaluation and Validation	. 50
	3.5	LLUC-2A-07-PV Predictive maintenance	. 51
	3.5.1	Evaluation and Validation	. 51
	3.6	Conclusions	. 53
4.	PILOT 2	2B EVALUATION & VALIDATION REPORT	. 54
	4.1	Introduction	. 54
	4.2	LLUC-2B-01 Predictive Maintenance for MV/LV Transformers	. 54
	4.2.1	Evaluation and Validation	. 54
	4.3	LLUC-2B-02 Detection of NTL in electrical grids	. 66
	4.3.1	Evaluation and Validation	
	4.4	Conclusion	. 74
5.	PILOT	BA EVALUATION & VALIDATION REPORT	. 74
	5.1	Introduction	. 74
	5.2	LLUC-3A-01-Optimizing HVAC control regarding occupancy	. 74
	5.2.1	Evaluation and Validation	
	5.3	LLUC-3A-02-Provide demand response services through building inertia and HVAC controls	. 79
	5.3.1	Evaluation and Validation	
	5.4	Conclusion	
6.	PILOT 3	B-PI EVALUATION & VALIDATION REPORT	. 85
	6.1	Introduction	85
	6.2	LLUC-3B-PI-01- Building Heating & Cooling consumption Analysis and Forecast	
	0.2		00

	6.2.1	Evaluation and Validation	86
	6.3	LLUC02-3B-PI-02 Anomaly detection of cooling & heating plants	91
	6.3.1	Evaluation and Validation	91
	6.4	LLUC03-3B-PI-03 Lighting Consumption Estimation & Benchmarking	95
	6.4.1	Evaluation and Validation	95
	6.5	Conclusion	96
7.	PILOT	3B-ROM EVALUATION & VALIDATION REPORT	97
	7.1	Introduction	97
	7.2	LLUC-3B-ROM Monitor and analysis of data coming from energy meters of ROME Municipal	ity
	buildin	gs asset	99
	7.2.1	Evaluation and Validation	100
	7.3	Conclusion	113
8.	PILOT	3C EVALUATION & VALIDATION REPORT	114
	8.1	Introduction	114
	8.2	LLUC-3C-01-Advanced EMS	114
	8.2.1	Evaluation and Validation	114
	8.3	LLUC-3C-02-Predictive Maintenance	117
	8.3.1	Evaluation and Validation	117
	8.4	Conclusion	123
9.	PILOT	4A EVALUATION & VALIDATION REPORT	124
	9.1	Introduction	124
	9.2	LLUC-4A-01 Energy Management of Micro-grids	124
	9.2.1	Evaluation and Validation	124
	9.3	Conclusion	128
10.	PLA	TOON COMMON COMPONENTS EVALUATION & VALIDATION REPORT	129
	10.1	Introduction	129
	10.2	Marketplace - IDS Metadata Registry (Broker/Appstore), Clearing House, DAPS and Vocabula	ary
	Provide	er	129
	10.2.1	Evaluation and Validation	129
	10.3	Conclusion	134
11.	CON	ICLUSION	135
ANN	IEX I: KP	I TEMPLATES	136
	Pilot 1	a Predictive Maintenance of Wind Farms	136
	Pilot 2	a Electricity Balance and Predictive Maintenance	141
	Pilot 2	b Electricity Grid Stability, Connectivity and Life cycle	149
	Pilot #	3a Office building: operation performance thanks to physical models and IA algorithms	174
	Pilot 3	b - PI Advanced Energy Management System and Spatial (Multi-Scale) Predictive Models in the	2
		City	
		b – ROM Advanced Energy Management System and Spatial (Multi-Scale) Predictive Models in	
		City	
		C Energy Efficiency and Predictive Maintenance in the Smart Tertiary Building Hub Grade	
		a Energy Management of Microgrids	
	PLATO	ON Common Components	223

List of Figures

FIGURE 1: LLUC-1A-01-NORMALITY HYBRID DIGITAL TWIN - VALIDATION RESULTS- MODELLING QUALITY - ACTIVE
Power
FIGURE 2: LLUC-1A-01-NORMALITY HYBRID DIGITAL TWIN - VALIDATION RESULTS- MODELLING QUALITY- ACTIVE
Power
FIGURE 3: LLUC-1A-01-NORMALITY HYBRID DIGITAL TWIN - VALIDATION RESULTS- MODELLING QUALITY- CURRENT
FIGURE 4: LLUC-1A-01-NORMALITY HYBRID DIGITAL TWIN - VALIDATION RESULTS- MODELLING QUALITY- STATOR
WINDING TEMPERATURE
FIGURE 5: LLUC-1A-01-FAILURE DETECTION CLASSIFIER - VALIDATION RESULTS
FIGURE 6: VALIDATION RESULTS OF EXPERIMENT OPT-1, TRAINED AND TEST WITH 80284, AND VALIDATED WITH 80744.
FIGURE 7: VALIDATION RESULTS OF EXPERIMENT OPT-2, TRAINED AND TEST WITH 80744, AND VALIDATED WITH
80284
FIGURE 8: VALIDATION RESULTS OF EXPERIMENT OPT-3, TRAINED, TESTED, AND VALIDATED WITH 80284 AND 80744.
FIGURE 9: OFFLINE RESULTS FOR TURBINE 80501
FIGURE 10: COMPARISON OF CUMULATIVE LOSS OF LIFE IN CONDUCTOR LEAD, CHIP AND WIRE BONDING
FIGURE 11: REAL LOSS OF LIFE CORRECTION
FIGURE 12: MAPE (%) OF NORMAL BEHAVIOUR MODEL FOR WIND FARM FRCVE
FIGURE 13: MAPE (%) OF NORMAL BEHAVIOUR MODEL FOR WIND FARM FRPHA
FIGURE 14: MAPE (%) OF NORMAL BEHAVIOUR MODEL FOR WIND FARM FRHBA
FIGURE 15: MAPE (%) OF NORMAL BEHAVIOUR MODEL FOR WIND FARM FRBOU
FIGURE 16: MAPE (%) OF NORMAL BEHAVIOUR MODEL FOR WIND FARM FRHBO
FIGURE 17: MAPE (%) OF NORMAL BEHAVIOUR MODEL FOR WIND FARM FRECH
FIGURE 18: OUTPUT SCADA_DATA_CLEANER THAT CONTAINS THE GENERATOR STATOR WINDING TEMPERATURE
SIMULATED BY THE TECN DIGITAL TWIN
FIGURE 20: RESOURCE CONSUMPTION BY SCADA_DATA_CLEANER FOR PROCESSING FRHBO DATA
FIGURE 21: RESOURCE CONSUMPTION BY SCADA_DATA_CLEANER FOR PROCESSING FRBOU DATA
FIGURE 22: RESOURCE CONSUMPTION BY SCADA_DATA_CLEANER FOR PROCESSING FRHBO+FRBOU DATA
FIGURE 23: RESOURCE CONSUMPTION BY ANOMALY_DETECTION FOR PROCESSING FRHBO
FIGURE 24: RESOURCE CONSUMPTION BY ANOMALY_DETECTION FOR PROCESSING FRBOU
FIGURE 25: RESOURCE CONSUMPTION BY ANOMALY_DETECTION FOR PROCESSING FRHBO+FRBOU
FIGURE 26: RESOURCE CONSUMPTION BY ROOT_CAUSE_IDENTIFIER FOR PROCESSING FRHBO
FIGURE 27: RESOURCE CONSUMPTION BY ROOT_CAUSE_IDENTIFIER FOR PROCESSING FRBOU
FIGURE 28: RESOURCE CONSUMPTION BY ROOT_CAUSE_IDENTIFIER FOR PROCESSING FRHBO+FRBOU 40
FIGURE 29: RESOURCE CONSUMPTION BY DASHBOARD PREPARATION FOR PROCESSING FRHBO

FIGURE 30: RESOURCE CONSUMPTION BY DASHBOARD_PREPARATION FOR PROCESSING FRBOU.	. 41
FIGURE 31: RESOURCE CONSUMPTION BY DASHBOARD_PREPARATION FOR PROCESSING FRHBO+FRBOU.	. 42
FIGURE 32 - VISUALIZATION OF VALIDATION RESULTS THROUGH VALIDATION VISUSUALIZATION TOOL	. 47
FIGURE 24 - COMPARISON BETWEEN REAL AND ESTIMATED LOAD CURVES (LEFT) AND EXAMPLES OF FORECASTING	
ERRORS (RIGHT)	. 47
FIGURE 33 - LLUC-2A-04-EXAMPLE OF PRODUCTION FORECAST ESTIMATIONS	. 48
FIGURE 34 - LUC-2A-04- ILLUSTRATION OF PRODUCTION SERVICE FILLING IN MYSQL TABLE	. 49
FIGURE 35: LLUC-2A-05- MAXIMAL PV INSERTION CAPACITY FOR THE LV GRID.	. 50
FIGURE 36: LLUC-2A-05- HISTOGRAM OF CALCULATED KPIS FOR THE CURRENT YEAR.	. 51
FIGURE 37: LLUC-2A-07- DAILY CALCULATED C.F. FOR THE PV PLANT INSTALLED AT IMP AND ESTIMATED PV MOD	ULE
DEGRADATION USING DIFFERENT LINEAR REGRESSION ALGORITHMS.	. 52
FIGURE 38: LLUC-2A-07- ON THE GRAPH, LIVE VALUES OF PV INJECT POWER AS REPORTED BY PMU BEFORE, DURI	NG
AND AFTER CHANGING THE COIL RATIO AND REAL-TIME QUERY OF AN ALARM FROM THE DATABASE	. 52
FIGURE 39: LLUC-2A-07- PART OF CODE THAT CONSTANTLY MONITORS THE INVERTERS AND REPORTS ALARMS TO I	MP
MySQL	. 53
FIGURE 40: 2B-01 KPI 1 - COMPARISON OF THE TEMPERATURE ESTIMATION BETWEEN ALL TRAINED MODELS	. 56
FIGURE 41 LLUC-2B-01- TOP OIL TEMPERATURE VIRTUAL SENSOR BEST PERFORMING MODEL VALIDATION RESULTS	. 57
FIGURE 41: PILOT 3A LLUC01 SCHEMA	. 75
FIGURE 42: BUILDING'S 1ST FLOOR SOUTH-WEST AREA OCCUPANCY STATUS DATA	. 76
FIGURE 43:BUILDING'S OCCUPANCY STATUS DATA	. 76
FIGURE 44: BUILDING'S OCCUPANCY FORECAST STATUS 2ND FLOOR SOUTH-WEST AREA	. 77
FIGURE 45: F BUILDING'S 2ND FLOOR SOUTH-WEST AREA PRE-HEATING OCCUPANCY PERIOD	. 77
FIGURE 46: PILOT 3A LLUCO2 SCHEMA	. 80
FIGURE 47: LLUC-3A-02- ENERGY CONSUMPTION OF THE COOLING SYSTEM	. 80
FIGURE 48: PILOT 3A HVAC LOAD	. 81
FIGURE 49: PILOT 3A LOAD SHIFTING ASSESSEMENT	. 82
FIGURE 50: HEATING AND COOLING LOAD SHIFTING FORECAST	. 82
42 89	
43 89	
FIGURE 45: LLUC-3B-PI-01 KPI-05 CO2 ENERGY CONSUMPTION TREND O THE ANNUAL BUDGET	. 91
FIGURE 46: LLUC-3B_PI-03 VIOLATION DETECTED IN RML61900 BUILDING	. 94
FIGURE 47: LLUC-3B_PI-02 – KPI-04 DEGRADATION OF HVAC SYSTEMS	. 95
48 95	
49 95	
FIGURE 50: LLUC-3B_PI-03- LIGHTING ESTIMATION	. 96
FIGURE 60: RESULTS OF THE USER TEST FOR EACH SERVICE OF THE PILOT-3B-ROM TOOLBOX	104
FIGURE 53: LLUC-3C-01-PV FORECASTER – PREDICTED VS REAL PV ENERGY GENERATION	115
FIGURE 59: LLUC-3C-01- ENERGY BILL AND RES USAGE OPTIMISER – OPTIMISED FORECAST VS REAL HVAC ENER	GY
CONSUMPTION	116
FIGURE 60: LLUC-3C-01- ENERGY BILL AND RES USAGE OPTIMISER – OPTIMISED FORECAST AND OPTIMISED	
Setpoints	116
FIGURE 60: LLUC-3C-02-HYDRAULIC PUMPS-BEHAVIOR FOR THE FIRST AND FINAL SAMPLES	118
FIGURE 65: LLUC3C-02-Hydraulic Pumps- Validation Results – NanoGUNE	120
FIGURE 61: LLUC-3C-02-CHILLERS-INPUT SIGNALS FOR ENERGY VARIATOR MODEL	

FIGURE 62: LLUC-3C-02-CHILLERS-MEASURED THERMICPOWER VS PREDICTED THERMICPOWER (ENERGY VARIATOR	
Оитрит)	3
FIGURE 63: LLUC-3C-02-CHILLERS-INTERACTIVE DASHBOARD FOR THE HIERARCHICAL VIEW OF HEALTH STATUS.	
TEMPERATURE INCREASE DETAIL	3
FIGURE 64: LLUC-4A-01-POWER PRODUCTION, STORAGE AND CONSUMPTION OF THE MICROGRID IN REAL TIME VIEW.	
	5
FIGURE 65: LLUC-4A-01-KPIS DASHBOARD WITH A SUMMARY OF THE RESULTS OF THE RELEVANT KPIS IN THE LAST	
PART OF THE VALIDATION PHASE	6
FIGURE 66: LLUC-4A-01-RENEWABLE POWER PRODUCTION AND RELATED FORECASTING	7
FIGURE 67: LLUC-4A-01-REAL TIME POWER FORECASTING ADJUSTMENTS BY MEANS OF NOWCASTING TECHNIQUE. 12	8
FIGURE 68: PLATOON COMMON COMPONENTS - INTEGRATION OF TRUE CONNECTOR INTO THE METADATA REGISTRY	Y
	0
FIGURE 69: PLATOON COMMON COMPONENTS - INTEGRATION OF DAPS INTO THE METADATA REGISTRY	1
FIGURE 70: PLATOON COMMON COMPONENTS - UI DASHBOARD	1
FIGURE 71: PLATOON COMMON COMPONENTS - DATASET WINDOW OF THE UI	2
FIGURE 74: UI TO REGISTER APP FROM DATA ANALYTIC TOOLBOX THROUGH DSC	
FIGURE 75: UI OF DSC TO UNREGISTER AN APP	3
FIGURE 72: PLATOON COMMON COMPONENTS - REJECTION LOG FROM THE CLEARING HOUSE WHEN TOKEN IS NOT	
VALID	3
FIGURE 73: PLATOON COMMON COMPONENTS – SUCCESSFUL RESPONSE MESSAGE FROM THE CLEARING HOUSE	
WITH RESPECT TO THE CONNECTOR'S INCOMING MESSAGE	3
FIGURE 74: PLATOON COMMON COMPONENTS - IDS VOCABULARY PROVIDER VALIDATION RESULTS 134	4

List of Tables

TABLE 1: LLUC-1A-01-KPIS EVALUA	TION- HYBRID-DIGITAL TWIN APPROACH	
TABLE 2. INFORMATION OF MAINTEN	ANCE REPORTS	
TABLE 3. INPUTS, OUTPUTS, AND CO	NSTANTS TO CALCULATE AIR DENSITY	
TABLE 4: PILOT 1A DIGITAL TWIN API	PROACH - FAILURE DETECTION - ERROR METRICS	19
TABLE 5: PERCENTAGE OF LOSS OF LIF	E IN CONDUCTOR LEAD, CHIP AND WIRE BONDING (DAILY/CUM	IULATIVE) 22
TABLE 6: LLUC-1A-01-KPIS EVALUA	TION- DATA DRIVEN APPROACH	
TABLE 7: CONFUSION MATRIX GENERA	ATOR BEARING REPLACEMENTS	
TABLE 8: CONFUSION MATRIX GENERA	ATOR FAN REPLACEMENTS	
TABLE 9: CONFUSION MATRIX ROTOR	BRUSH HIGH TEMPERATURE FAILURE	
TABLE 10: PERCENTAGE OF OBSERVAT	TIONS CLASSIFIED AS BAD HEALTH FOR TURBINES THAT HAVE NO	OT EXPERIENCED ANY
RELEVANT FAILURES DURING THE	OBSERVATION PERIODS.	
TABLE 11: IMPROVEMENT NEW DETER	CTOR OVER OLD DETECTOR	
TABLE 12: IMPROVEMENT NEW DETER	CTOR OVER OLD DETECTOR	
TABLE 13: : IMPROVEMENT NEW DET	ECTOR OVER OLD DETECTOR	
TABLE 16: LLUC-2A-03- KPIS EVALU	IATION	46
PLATOON	Contract No. GA 872592	Page 10 of 227

TABLE 17: LLUC-2A-04- KPIS EVALUATION	48
TABLE 18: LLUC-2A-05- KPIS EVALUATION	50
TABLE 19: LLUC-2A-07- KPIS EVALUATION	51
TABLE 20: LLUC-2B-01- KPIS EVALUATION	54
TABLE 21: LLUC-2B-01- SAMPOL - TOP OLI TEMPERATURE MODEL RESULTS	55
TABLE 20: LLUC-2B-02- KPIS EVALUATION	66
TABLE 20: LLUC-3A-01- KPIS EVALUATION	79
TABLE 22: LLUC-3A-02- KPIS EVALUATION	83
TABLE 22: LLUC-3B-PI-01- KPIS EVALUATION	86
TABLE 23: LLUC-3B-PI-02- KPIS EVALUATION	92
TABLE 24: LLUC-3B-PI-02 KPI-02: -ROMA TRIGORIA, TEMPERATURE VIOLANTIONS IN SEPTEMBER	
TABLE25: LLUC-3B-PI-02-ROMA TRIGORIA KPIs jError! Marcador	NO DEFINIDO.
TABLE 28: LLUC-3B-PI-03- KPIS EVALUATION	95
TABLE 1: LLUC-3B-ROM- KPIS EVALUATION	100
TABLE 30: LLUC-3C-01- KPIS EVALUATION	114
TABLE 32- LLUC-3C-01-VALIDATION DATA RESULTS	
TABLE 31: LLUC-3C-02-Hydraulic Pumps-KPIs evaluation	117
TABLE 27: LLUC-3C-02-Hydraulic Pumps-Results for different hyperparameter combination	-
AUTOENCODER ONECLASS CLASSIFIER	119
TABLE 35: LLUC3C-02-HYDRAULIC PUMPS- VALIDATION RESULTS – IMS AND FEMTO	119
TABLE 35:LLUC3C-02-Hydraulic Pumps- Average computational time for the AutoEncoder	
IMPLEMENTATION	120
TABLE 33: LLUC-3C-02-CHILLERS-KPIS EVALUATION	121
TABLE 34: : LLUC-4A-01- KPIS EVALUATION	
TABLE 35: OVERALL VALIDATION STATUS SUMMARY	135

List of Terms and Abbreviations

CA	Consortium Agreement			
СО	Confidential			
DM	Dissemination Manager			
EC	European Commission			
ES	Energy System			
EM	Exploitation Manager			
GA	Grant Agreement			
GAM	General Assembly Meeting			
IDS	International Data Spaces			
MSLE	Mean Squared Logarithmic Error			
PM	Project Manager			
PML	Process Mastery Level			
POD	Point of Delivery			
PDR	Point of Re-delivery			
PU	Public			
QA	Quality Assurance			
RE	Restricted			
ReLU	Rectified Linear activation fUnction			
SC	Steering Committee			
ТМ	Technical Manager			
WP	Work package			
WPL	Work package Leader			

1. Introduction

This report summarises the evidence and analysis of the preliminary validation results of the different components developed in WP2, WP3 and WP4 collected upon the execution of all large scale pilot sites and corresponding use cases. The validation is performed based on the KPIs identified in the validation plan defined in deliverable D6.6. This deliverable is structured in the following sections:

Sections 2-9 summarise the validation results and conclusions for all the large scale pilot sites and corresponding use cases.

Furthermore, section 10 contains the validation results of the PLATOON Common components which are cross-pilot.

Finally, there is a conclusions section where an overall evaluation is done.

Besides, Annex I explains the KPIs for the different pilots and common components which were initially defined for deliverable D6.6 and some of which have been updated.

2. Pilot 1A Evaluation & Validation Report

2.1 Introduction

This pilot focusses on wind farms both onshore and offshore with a specific focus on wind turbines in the range of 1.5-3MW owned by ENGIE in different locations across Europe. There is a single use case focused on predictive maintenance of wind turbine electrical drivetrain components which aims to:

- 1. Develop, implement and validate accurate physical and data-driven models of the wind turbine electrical drivetrain components: generator and power converter.
- 2. Develop anomaly detection methods for identification of unhealthy behaviour of the components in scope.
- 3. Develop an approach to convert the identified anomalies towards health indicators to create a diagnostic tool.
- 4. Extract the relevant events that the electrical drivetrain components are exposed to and have a potential negative effect on the lifetime of the electrical components.

2.2 LLUC-1A-01-Predictive maintenance of wind turbine electrical drivetrain components

This use case focuses on data analytics tools to accurately detect failures in the electrical components of wind turbines, limited specifically to the generator (doubly fed induction generator) and the power converter. In this use case two different approaches are used:

- 1. Hybrid-digital twin approach developed by TECN
- 2. Data driven approach developed by VUB

2.2.1 Evaluation and Validation

2.2.1.1 Hybrid-digital twin approach

Table 1: LLUC-1A-01-KPIs evaluation- Hybrid-digital twin approach

KPI #	Description	Target Value	Actual Value	Comments

1	Modelling quality	3%	Active Power – MAPE=2.33% Current – MAPE=2.66% Stator Winding Temperature – MAPE=4.33%	The error (for the active power and current parameters) is below the threshold value of 3%. However, the error for the stator winding temperature is above the target threshold.
2	Integration	1	1.0	All PLATOON components have been implemented and validated.
3	Fault Detection	Compared to the current failure detection the speed should improve with at least 25%, while keeping false positives below 10%	The new algorithms have not improved the current detection speed. However, the false positives have stayed the same.	Although the fault detection target value has not been achieved, the developed algorithm has proven to help the troubleshooting of the failed components. Besides, for V2 of this document we are currently working on new algorithms that include more features to try to improve the fault detection KPI.
4	Processing Capability	Full processing chain for a farm should be able to run on a standard server.	Full processing chain is able to run on a standard server.	The training part and dockerisation of the Digital Twin in Matlab showed a high consumption of RAM and CPU. However, once it is dockerised the execution phase is significantly less computationally expensive and can be run in any standard server with 4CPUs and 16GB RAM.
5	Maintenance costs reduction	1 M€	5 M€	On target. The business preferred to provide numbers in absolute values.
6	Availability increase	2-5%	0.01%	No availability increase as the downtime (3 weeks) for a generator replacement is low compared to total availability over the lifetime of the turbine.

To validate the data analytic tools for predictive maintenance of wind turbines developed in WP4, the tools have been trained and tested with data from several onshore wind farms from ENGIE all with data from Senvion units of 2MW.

Any data regarding turbine, identifier, location and date have been removed due to confidentiality issues.

Regarding the modelling quality KPI, for the Normality Digital Twin of the Electric Generator it can be noted that the results have significantly improved compared to the ones obtained for the 1.5MW GE units used for model development in WP4. This is due to the fact that the 2MW Senvion turbines have a torque sensor and, thus, we can use the measured torque directly as an input to the

electromechanical digital twin. This reduces significantly the uncertainty linked to the aero-mechanical model due to different parameters (direction, density...) that affect on the effective wind speed. Figure 1 shows the comparison of real data (orange), simulated data using torque as input (blue) and simulated data using wind speed as input (yellow).

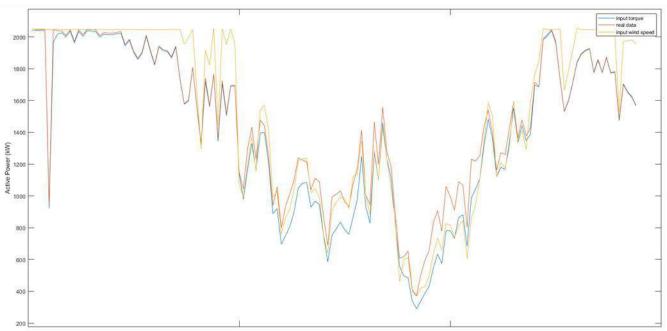


Figure 1: LLUC-1A-01-Normality Hybrid Digital Twin - Validation Results- Modelling quality - Active Power

¡Error! No se encuentra el origen de la referencia.Figure 2, Figure 3 and Figure 4 **¡Error!** No se encuentra el origen de la referencia.show the simulated (blue) and real data (orange) for active power, current and stator winding temperature parameters, respectively. As it can be noted the error for the stator winding temperature parameter is larger compared to the active power and current. In fact, the error for the active power and current parameters is below the threshold value of 3%, whereas, the error for the stator winding temperature is above the target threshold.

ACTIVE POWER

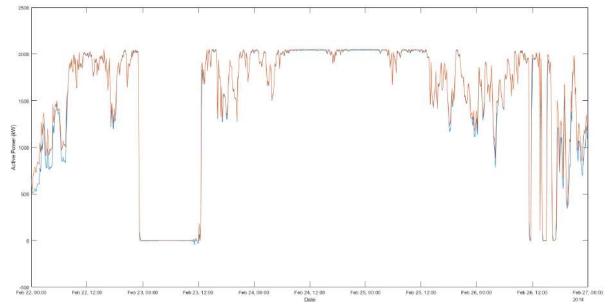



Figure 2: LLUC-1A-01-Normality Hybrid Digital Twin - Validation Results- Modelling quality- Active Power

CURRENT

Figure 3: LLUC-1A-01-Normality Hybrid Digital Twin - Validation Results- Modelling quality- Current

STATOR WINDING TEMPERATURE

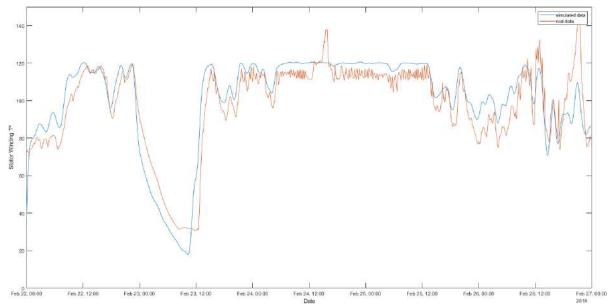


Figure 4: LLUC-1A-01-Normality Hybrid Digital Twin - Validation Results- Modelling quality- Stator Winding Temperature

Regarding the integration KPI, all the components have been successfully integrated and validated. The evidence for the implementation can be found in deliverable D6.7.

Regarding the fault detection KPI, the initial classifier developed in WP4 was validated and the results showed that it was only detecting anomalies but not failures. In fact, the selected parameters were selected to identify an over temperature. However, an overtemperature is not necessarily a symptom of a failure and could happen due to high ambient temperature conditions along with high wind speeds. The actual failure that ENGIE is interested in detecting is a "Generator Fan Failure". To be able to detect the failure the classifier has been improved using as the condition indicator the difference between the real and simulated stator winding temperature. The modified classifier was capable of detecting an issue over one month prior to the failure. These tests have been carried out for one of the wind turbines.

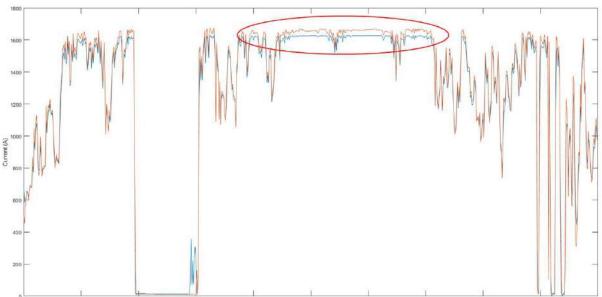


Figure 5: LLUC-1A-01-Failure Detection Classifier - Validation Results

However, from the failure identification date until the date when the fan was replaced the tool did not trigger anymore. This issue was validated with the operator who confirmed that there was a stator winding temperature sensor failure and the sensor was replaced. However, there were no further maintenance actions until the fan replacement. In addition, the developed data analytics tool was further validated with other labelled failures on other similar wind turbines and a similar pattern was observed. As a conclusion it was thought that the cause of the fan replacement could be due to a different reason of overtemperature (e.g. noise, vibration, etc.).

Therefore, from M30-M36 a new classifier was developed using new features and machine learning techniques as explained in deliverable D4.8. Samples from SCADA data and from simulated digital twin were labelled with actual failure modes using operation and maintenance orders report when failure mode events occur. The maintenance information provided is presented in the table below.

Wind turbine identification	Failure mode	Event date	Initial time window	Final time window
80284	Generator fan replacement	2018-04-05	2018-04-04	2018-04-05
80744	Electric generator overheating.	2017-12-22	2017-12-20	2017-12-22

Table 2. information of maintenar	nce reports
-----------------------------------	-------------

Focusing on the electric generator overheating failure mode, three different experiments are performed. In these experiments, samples are organized in different ways to train, test, and validate the supervised algorithms. The samples are organized as following:

- OPT-1: the wind turbine 80284 located in the parc FRHBA is used to train and test the algorithm. The wind turbine 80744 located in the parc FRSMV is used to validate.
- OPT-2: the wind turbine 80744 located in the parc FRSMV is used to train and test the algorithm. The wind turbine 80284 located in the parc FRHBA is used to validate.
- OPT-3: the wind turbines 80744 and 80284 located in the parc FRSMV and FRHBA are used to train, test, and validation.

The table below presents in detail the samples organization.

Table 3. Inputs, outputs, and constants to calculate air density.

Experi	Train and test samples			Validation samples				
ment	Mac code	Parc code	Initial date	Final date	Mac code	Parc code	Initial date	Final date
OPT-1	80284	FRHBA	2018-02-15	2018-03-06	80744	FRSMV	2017-12-10	2017-12-24
OPT-2	80744	FRSMV	2017-12-10	2017-12-24	80284	FRHBA	2018-02-15	2018-03-06
OPT-3	OPT-1 &	OPT-1 & OPT-2						

The table shows the confusion matrix metrics in percentage units:

Experiment	True Positive	False Positive	False Negative	True Negative
OPT-1				
(train & test)	88,2%	0,0%	0,0%	11,8%
OPT-1				
(validation)	85,3%	0,3%	13,4%	1,1%
OPT-2				
(train & test)	85,6%	0,0%	0,1%	14,4%
OPT-2				
(validation)	88,1%	0,0%	11,6%	0,2%
OPT-3				
(train & test & validation)	87,0%	0,0%	0,0%	13,0%

Table 4: Pilot 1A Digital Twin Approach - Failure Detection - Error Metrics

The training and test process of OPT-1 and OPT-2 present a high accuracy around 99,95%. However, the validation process of OPT-1 and OPT-2 present an accuracy with modest results of 86.3% and 88.3%, respectively. This fact is interpreted as lack of failure mode information in the samples to generalise behaviour when the algorithm is trained.

Therefore, the experiment OPT-3 combines all the samples with failure mode labelled. The results exhibit excellent outcomes with an accuracy of the 100%.

The failure mode labelled and diagnosed for the three experiments are presented as a function of time in the figures below. These figures present are two signals: the labelled samples, and the predicted samples.

- Failure labelled: samples is labelled with failure mode using the information provided by the maintenance reports.
- Failure predicted: The Random Forest algorithm predicts that failure mode occurs.
- No failure predicted: The Random Forest algorithm predicts that the behaviour is normal, and no failure mode happens.
- NO failure labelled: the samples are labelled without failure mode using the information provided by the maintenance reports.

The figure below shows the validation result of OPT-1 experiment. On the one hand, the samples from wind turbine 80284 are trained and tested the Random Forest algorithm. On the one hand, the samples

from wind turbine 80744, that are not used during the train and test, are shown in the figure below. The orange samples are defined

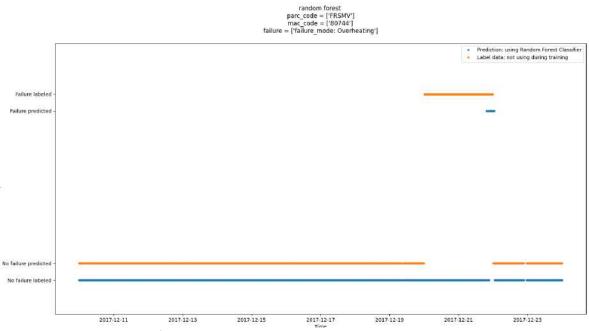


Figure 6: Validation results of experiment OPT-1, trained and test with 80284, and validated with 80744.

The figure below shows the validation result of OPT-2 experiment. On the one hand, the samples from wind turbine 80744 are trained and tested the Random Forest algorithm. On the one hand, the samples from wind turbine 80284, that are not used during the train and test, are shown in the figure below.

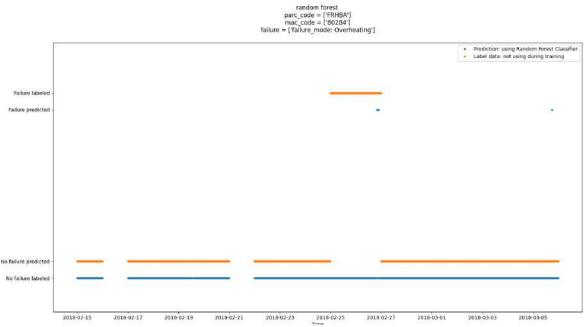


Figure 7: Validation results of experiment OPT-2, trained and test with 80744, and validated with 80284.

The figure below shows the validation result of OPT-3 experiment. This experiment uses the samples from wind turbine 80744 and 80284 to the train, test, and validation. The results are shown in the figure below. Due to all the samples.

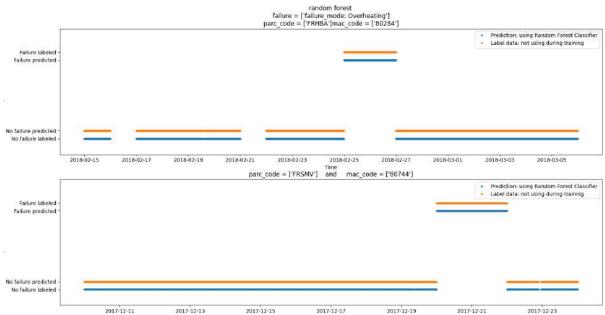


Figure 8: Validation results of experiment OPT-3, trained, tested, and validated with 80284 and 80744.

The three figures before show that failure mode predictions are temporarily grouped together. From a temporal point of view, reviewing in detail time backward and forward samples, the predictions do not fluctuate between detection and non-detection the failure mode. This fact, in addition to the favourable prediction results, makes it reasonable to conclude that the new algorithm based on Random Forest algorithm is operating adequately.

Regarding the validation of the RUL estimation tool, real failure labelled data was used to validate the tool. More in detail, in wind farm Le Champ Vert (FRCVE) it was a IGBT rack replacement labelled in wind turbines 80501 and 80505. So, it is decided to study in detail the behavior of three wind turbines installed in this wind farm: 80499 (no failure), 80501 (rack replacement 06/01/2016-07/01/2016, a period before the availability of real data) and 80505 (rack replacement 08/06/2020-07/07/2020), applying the methodology to calculate the life consumption.

Temperatures in the diode and the IGBT of wind turbine 80501, considering a period of maximum power, are shown in Figure AAB. The behavior in terms of temperature is similar in the three wind turbines.

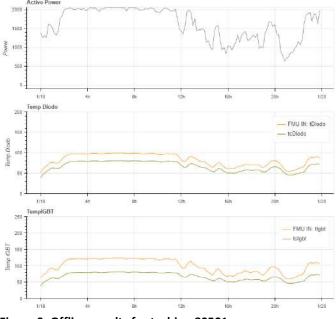


Figure 9: Offline results for turbine 80501

The daily life consumption relating to the working duty along the operation years (2016 - 2022) is shown in Table 5 left columns, while in right columns the cumulative life consumption is shown.

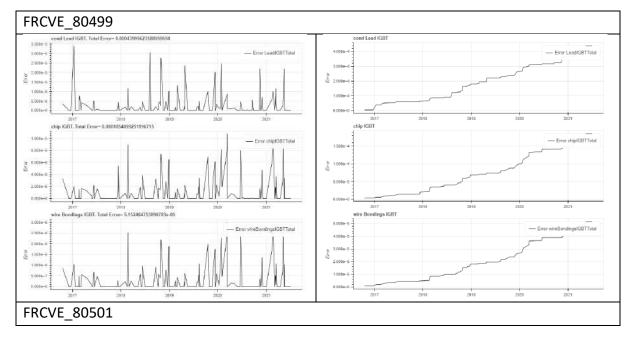
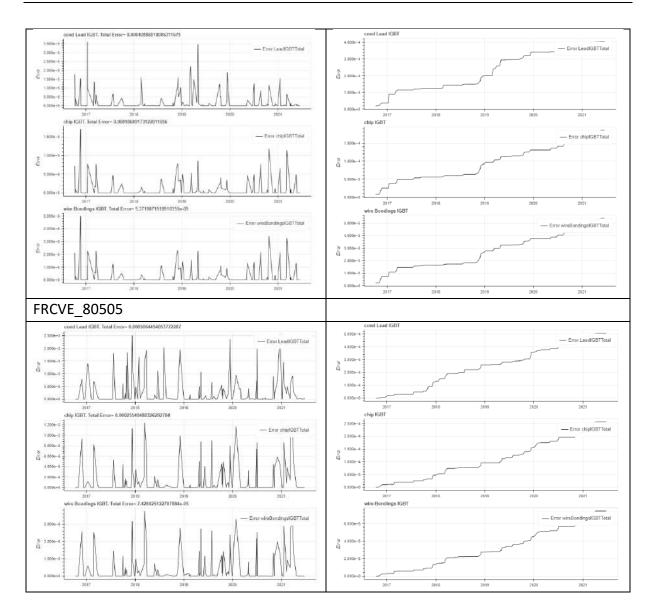
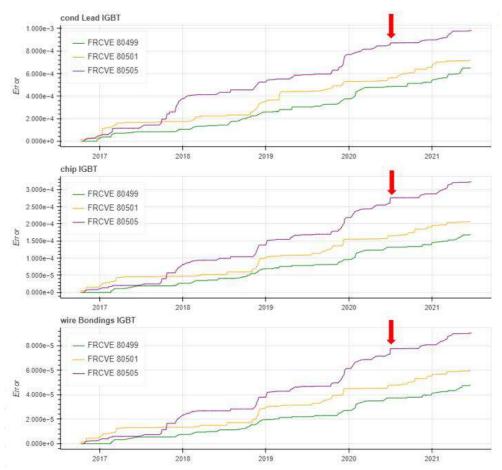
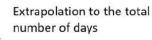



Table 5: Percentage of loss of life in conductor lead, chip and wire bonding (daily/cumulative)

In Figure 10, the cumulative loss of life is shown in the same graphic. It can be seen that the wind turbine with the labelled change of IGBT rack in 2020 year (FRCVE 80505) has a higher loss of life than the other two wind turbines.




Figure 10: Comparison of cumulative loss of life in conductor lead, chip and wire bonding

However, although there are available data of almost 5 years (2016 - 2021), there are a lot of days with no data:

- data_FRCVE_80499: 18/10/2016 06/07/2021 (1722 días) à only data of 168 days
- data_FRCVE_80501: 06/10/2016 28/06/2021 (1726 días) à only data of 159 days
- data_FRCVE_80505.csv: 12/10/2016 01/07/2021 (1723 días) à only data of 187 days

So, a correction has been made with the intention of considering this fact in the calculation of the accumulate life consumption.

Total_Error	wireBondingIGBT	CondLeadIGBT	ChipIGBT
FRCVE_80499	0,000048	0,000652	0,000169
FRCVE_80501	0,000060	0,000718	0,000208
FRCVE_80505	0,000090	0,00098	0,000322

N			
Total_Error	wireBondingIGBT	CondLeadIGBT	ChipIGBT
FRCVE_80499	0,000492	0,006683	0,001732
FRCVE_80501	0,000651	0,007794	0,002258
FRCVE_80505	0,000829	0,009030	0,002967

Extrapolation to the total number of days from commissioning (4783)

Total_Error	wireBondingIGBT	CondLeadIGBT	ChipIGBT
FRCVE_80499	0,001367	0,018563	0,004811
FRCVE_80501	0,001805	0,021599	0,006257
FRCVE_80505	0,002302	0,025066	0,008236

Figure 11: Real loss of life correction

Considering that the expected lifetime of a converter is 20 years, the loss of life in 4 years (or 12 years) is not realistic in absolute terms, although in comparison terms the results are according to the reality. It must be also considered that the methodology has been applied using SCADA data every 10 minutes. The model would have been more accurate with higher frequency data.

Regarding the processing capability, the full processing pipeline has been implemented (see D6.2) and is able to run on a standard server. The training part and dockerisation of the Digital Twin in Matlab showed a high consumption of RAM and CPU. However, once it is dockerised the execution phase is significantly less computationally expensive and can be run in any standard server with 4CPUs and 16GB RAM.

Finally, to calculate the Maintenance Cost Reduction and Availability Increase the following assumptions were made:

- A generator stator fan failure happens 0,4 times in the lifetime of a wind turbine (considering 25 years lifetime). This is based on the from the D4REL project that stated that 0,1 generator fails per turbine per year. of those 16% is linked to the stator¹.
- Based on the results of the data analytics toolbox, we assume 10% of generator stator fan failures can be detected thanks to the developed Hybrid Digital Twin and Failure detection data analytics toolbox. Although the tool was able to detect 100% (2/2) of the labelled failures we assume a safety factor due to other unlabelled failures that we might have missed and due to the generalisation capacity limitation explained previously.
- Cost of generator replacement:
 - 3 weeks downtime cost: 2 MW machine * 30% capacity factor * 21 days *24h = +/-300 MWh => at 70 euro/MWh => 21 k€

¹ Deliverable 1.1 Wind Turbine Generator Systems Failures Probabilities and Mechanisms, D4REL , https://www.d4rel.nl/.

- 3 days work to replace the generator: 6k€
- o 50k€ for the crane
- 50k€ for the generator
- Total cost of 127 k€

Hence, per wind turbine we can prevent 5k€ per WT during its lifetime. Therefore, considering a fleet of 1000 WT we can prevent 5M€ of maintenance costs.

Regarding the availability, we could prevent 10% of 1300 weeks of operation fleetwide which corresponds to an availability increase of 0.01%, which is negligible.

2.2.1.2 Data driven approach

Table 6: LLUC-1A-01-KPIs evaluation- Data driven approach

KPI #	Description	Target Value	Actual Value	Comments
1	Modelling quality	3%	See jError! No se	This goal can be considered
			encuentra el	accomplished given that the
			origen de la	performance on all signals is
			referencia.	close to or surpasses the
				target value and the fact that
				steady-state and transient
				are modelled together.
2	Integration	1	1	The different apps of the
				pipeline are well integrated.
				The integration has been
				tested thoroughly. The IDS
				development has been
				completed, tests have been
				done. The data analytics
				pipeline and the IDS
				connectors can work
				together.
3	Fault Detection	Compared to	Accomplished	False positives can be held
		the current		bellow the false positive
		failure		threshold of 10% (see part
		detection the		KPI 3).
		speed should		
		improve with		
		at least 25%,		
		while keeping		
		false		
		positives		
		below 10%		
4	Processing Capability	Full	Accomplished	The pipeline was validated
		processing		on a standard server (see
		chain for a		part KPI 4).
		farm should		
		be able to run		
		on a standard		
		server.		

5	Maintenance costs reduction	10-20%	Accomplished	The cost reduction
				surpasses the 20% threshold
				(see part KPI 5).
6	Availability increase	2-5%	Accomplished	The availability of the
				turbines increases by more
				than 2% when the data
				analytics pipeline is used.

To assess whether the KPIs are achieved, the pipeline is tested on data from 6 wind farms available in the ENGIE Senvion historical batch, e.g. FRCVE (Senvion MM82), FRPHA (Senvion MM82), FRHBA (Senvion MM82), FRHBO (Senvion MM82), FRBOU (Senvion MM82) and FRECH (Senvion MM92).

KPI 1: Modelling quality

KPI description:

Accuracy of the predicted value compared to the real value under healthy operating conditions using the Mean Absolute Percentage Error (MAPE). Target value = 3% and threshold value = 5%.

Results:

The accuracy results presented here are for healthy steady-state and transient data combined. Improvements in the methodology have made it possible to model the steady-state and the transient behaviour of the wind turbines accurately with a single model. This means that the distinction between the two is no longer relevant. This is a major improvement over the original KPI.

Figure 12 shows that the MAPE of the Normal Behaviour Model (NBM) for wind farm FRCVE (Senvion MM82) is slightly higher than the target value of 3%, but very close. Figure 13 indicates that the MAPE for the FRPHA wind farm is lower than 3% for all the signals. Figure 14 and Figure 15 tell the same story for respectively wind farms FRHBA and FRBOU. Figure 16 shows that the MAPE on the wind farm FRHBO is slightly larger than 3%. Figure 17 shows the results for the wind farm FRECH. This wind farm consists of turbines of the type Senvion MM92. The MAPE (%) is for all signals substantially lower than 3%. For all turbines the MAPE is smaller than the threshold value of 5%.

Conclusion:

Based on these results it can be concluded that KPI 1 is achieved.

Signal name	TempGenBearing_1 (avg)	TempGenBearing_2 (avg)	TempStatorWind (avg)
CV1	3.17	2.74	2.36
CV2	6.87	3.02	4.48
CV3	3.07	2.37	2.53
CV4	3.34	2.44	2.46
CV5	2.84	4.47	3.58
ALL	3.86	3.01	3.08

Figure 12: MAPE (%) of Normal Behaviour Model for wind farm FRCVE.

Signal name	TempGenBearing_1 (avg)	TempGenBearing_2 (avg)	TempStatorWind (avg)
PH1	2.45	2.78	3.05
PH2	2.00	2.40	2.63
PH3	2.94	3.08	2.74
PH4	2.75	3.80	2.29
PH5	1.87	2.15	2.73
PH6	2.59	2.13	2.99
ALL	2.43	2.72	2.74

Figure 13: MAPE (%) of Normal Behaviour Model for wind farm FRPHA.

Signal name	TempGenBearing_1 (avg)	TempGenBearing_2 (avg)	TempStatorWind (avg)
HB1	2.18	1.59	2.02
HB2	2.61	1.71	2.16
HB3	2.07	1.94	2.02
HB4	2.43	2.30	2.61
HB5	1.97	3.15	2.50
HB6	1.44	1.67	1.83
ALL	2.12	2.06	2.19

Figure 14: MAPE (%) of Normal Behaviour Model for wind farm FRHBA.

Signal name	TempGenBearing_1 (avg)	TempGenBearing_2 (avg)	TempStatorWind (avg)
BO1	2.39	5.14	4.42
BO2	1.98	2.32	2.80
BO3	4.32	2.46	2.88
BO4	2.67	1.98	2.41
BO5	2.19	3.40	4.35
BO6	1.88	2.52	2.41
ALL	2.57	2.97	3.21

Figure 15: MAPE (%) of Normal Behaviour Model for wind farm FRBOU.

Signal name	TempGenBearing_1 (avg)	TempGenBearing_2 (avg)	TempStatorWind (avg)
HBO1	4.23	4.21	3.00
HBO2	3.78	6.87	3.53
HBO3	3.44	2.54	2.61
HBO4	3.59	3.39	2.95
ALL	3.76	4.25	3.02

Figure 16: MAPE (%) of Normal Behaviour Model for wind farm FRHBO.

Signal name	TempGenBearing_1 (avg)	TempGenBearing_2 (avg)	TempStatorWind (avg)
ECH1	1.76	1.52	3.11
ECH2	1.63	1.66	1.98
ECH3	1.42	1.45	1.84
ECH4	2.86	2.10	2.18
ECH5	1.61	2.75	3.08
ECH6	4.39	2.24	3.44
ECH7	1.10	2.04	1.94
ECH8	1.11	1.57	1.83
ALL	1.98	1.92	2.42

Figure 17: MAPE (%) of Normal Behaviour Model for wind farm FRECH.

KPI 2: Integration

KPI description:

Metric targeted at the validation of the fact that the tools of this pilot are able to work together.

Results:

The different sub-apps of the VUB data analytics pipeline have been thoroughly tested in an integration test (this was shown during multiple demos to the other partners of PLATOON). The test showed that the different sub-apps can work together with no issues. The VUB data analytics pipeline is also able to use the output of the TECN digital twin as an input signal. Figure 18 shows the output of the SCADA_Data_Cleaner for the turbine BO1. The output contains the signals "Simulated stator winding temperature fleet" and "Simulated stator winding temperature BO1". These signals are preprocessed versions of the simulated signal generated by the TECN digital twin. The simulated signal has been preprocessed, so that it can be used in the next steps of the VUB data analytics pipeline. This proves that both pipelines (e.g. the TECN digital twin and the VUB data analytics pipeline) are integrated. The interoperability with the IDS connector has also been tested. The pipeline can use the data that is being

delivered by the VUB IDS consumer. The data that is produced by the pipeline can also be send back to ENGIE using the VUB IDS producer. The integration between the TECN digital twin and the VUB data analytics pipeline has been tested and is successful.

```
'Simulated stator winding temperature fleet median
        <u>'Simulated stator winding temperature B01', 'active</u> power fleet median',
        'active_power B01', 'generator_speed fleet median',
'generator_speed B01', 'nacelle_temperature fleet median',
        'nacelle_temperature B01', 'outside_temperature fleet median',
'outside_temperature B01', 'rotor_speed fleet median',
        'rotor_speed BO1', 'torque fleet median', 'torque BO1',
        'wind speed fleet median', 'wind speed B01'
        'gearbox speed fleet median', 'gearbox speed BO1',
        'curtailed fleet median', 'curtailed B01', 'op cond fleet median',
        'op cond B01',
        'Unhealthy data: Failure: Generator bearing replacement B01',
        'Unhealthy data: Failure: Generator fan replacement BO1',
'Unhealthy data: Failure: IGBT fan replacement BO1',
        'Unhealthy data: Failure: IGBT rack replacement B01',
        'Unhealthy data: Failure: Rotor brush high temperature BO1',
        'Unhealthy data: Failure: Slipring replacement BO1', 'abs op cond BO1'],
       dtype='object', name='Windturbine name')
```

Figure 18: Output SCADA_Data_Cleaner that contains the generator stator winding temperature simulated by the TECN digital twin.

Conclusion:

Based on these results it can be concluded that most elements of the KPI have been achieved. A KPI score = 1 can be assigned.

KPI 3: Fault detection

KPI description:

Anomaly detection speed + accuracy (false vs true positive). The accuracy is expressed using a confusion matrix. For the speed this is expressed in time to catastrophic failure. Compared to the current failure detection the speed should improve with at least 25%, while keeping false positives below 10%

Results:

Constructing a confusion matrix on data from real wind farms is not a trivial task. There are several unknowns. When did the damage that eventually resulted in the failure start? Was the problem after

the replacement immediately fixed or did it persist for while? Is the date of the replacement exact or is there some margin of error? Is the list of failures complete? This makes determining what a true/false positive/negative is not a straightforward task. Some assumptions will need to be made.

- True positive (TP): is when the health of the signal that is relevant for the failure has degraded to "bad" around the time of the replacement or failure. Some failures form slowly over time. This means that the signal health can degrade to bad a long time before the replacement or failure actually happens. The bad health can also persist for a short while after the failure or replacement. This can be due to an imprecise replacement date, or the run-in of a new component or a maintenance handling that did not resolve the issue at the first attempt. It is however important that the bad health classification improves to "mediocre" or "good" not to long after the replacement.
- True negative (TN): is when the health of the signal improves to "mediocre" or "good" not to long after a failure. It needs to be taken into account that there can be some delay in the improvement. This can be the result of an imprecise replacement date, or the run-in of a new component or a maintenance handling that did not resolve the issue at the first attempt.
- False positive (FP): If after the replacement or failure there is no indication that the health of the signal has improved.
- False negative (FN): If prior to the replacement or failure there is no clear bad health classification for the relevant signal.

Table 7: Confusion matrix generator bearing replacements

		Failure	
		Т	F
mon	Т	3	0
And	F	1	4

 Table 8: Confusion matrix generator fan replacements.

		Failure		
		Т	F	
m	Т	3	1	
Anom	F	0	2	

Table 9: Confusion matrix rotor brush high temperature failure.

		Failure		
		Т	F	
m	Т	4	1	
Anom	F	1	4	

Table 7 shows the confusion matrix for the generator bearing replacements. The metrics for this failure are: accuracy = 0.88, precision = 1.00, recall = 0.75 and F1 = 0.86. Table 8 shows the confusion matrix for the generator fan replacements. The metrics for this failure are: accuracy = 0.83, precision = 0.75, recall = 1.00 and F1 = 0.86. Table 9 shows the confusion matrix for the rotor brush high temperature failures. The metrics are: accuracy = 0.80, precision = 0.80, recall = 0.80 and F1 = 0.80.

The detection speed is defined as the time between the first detection in the cluster of detections that can be associated with the replacement or failure and the failure itself. 66% of the detected generator bearing replacements were detected at least one month before the replacement. 66% of the detected generator fan replacements were detected at least 1 month in advance. 75% of the detected rotor brush high temperatures were detected at least 1 month in advance.

The KPI determines that the false positives need to be lower than 10%. The confusion matrices shown above focus strongly on a window of data around the failures. This is however insufficient to get an idea of the overall number of false positives the pipeline generates. For this reason a different methodology is used. The false positives are calculated as the percentage of observations that are considered "bad health" for turbines that did not experience any known relevant replacements or failures (i.e. generator bearing replacements, generator fan replacements or rotor brush high temperature failures). For each signal the median of these percentages is calculated. To achieve this KPI the median needs to be below 10%. Table 10 shows that this target is achieved for 2 of the 3 signals. For TempGenBearing_1 (avg) the median is slightly higher than 10%. The results for all signals combined give a median lower than 10%.

		TempGenBearing_1	TempGenBearing_2	
Wind farm	Wind turbine name	(avg)	(avg)	TempStatorWind (avg)
FRCVE	CV1	2.79	2.79	13.44
FRCVE	CV4	8.44	8.31	5.52
FRPHA	PH1	26.64	40.87	2.86
FRHBO	НВОЗ	12.07	15.01	1.05
FRHBO	НВО4	10.47	21.1	9.36
FRBOU	BO2	15.39	3.77	10.79
FRBOU	BO3	5.66	5.22	8.24
FRBOU	BO6	8.7	3.45	7.7
FRECH	ECH1	0.14	27.63	0.14
FRECH	ECH2	8.35	3.02	1.58
FRECH	ECH3	1.63	49.27	0
FRECH	ECH4	14.57	4.76	27.27
FRECH	ECH5	40.33	14.63	0
FRECH	ECH6	15.4	19.57	33.38
FRECH	ECH7	4.6	17.55	3.45
FRECH	ECH8	25.04	1.15	1.58
FRHBA	HB1	10.42	21.47	7.18
FRHBA	HB2	14.02	3.34	7.35
FRHBA	HB4	1.95	7.47	1.82
Median		10.42	8.31	5.52

Table 10: Percentage of observations classified as bad health for turbines that have not experienced any relevant failures during the observation periods.

Lastly, the KPI also determines that compared to the current failure detection the detection speed should improve (and preferably with 25%). To assess whether this KPI was achieved, the following analysis is done. For each failure is determined which detector (old or new) detected the failure first. The detector that detected it first gets a score of 1 for this failure. In the end the mean is taken of the scores for the new detector and multiplied by 100, to get a result in percent. The Table 11 shows that 50% of the generator bearing replacement cases were detected first by the new detector. Table 12 shows that 66% of the generator fan replacements were detected first by the new detector. Table 13 shows that 60% of the rotor brush high temperature failures are detected first by the new detector. This means that for all three cases the KPI of 25% improvement is achieved.

Turbine	Failure	Date	Old detector	New detector
CV5	Generator bearing replacement	6/07/2017	0	0
PH5	Generator bearing replacement	4/07/2017	0	0
HB3	Generator bearing replacement	31/10/2019	0	1

HBO2	Generator bearing replacement	19/10/2018	0	1
Improvement	50%			

Table 12: Improvement new detector over old detector.

Turbine	Failure	Date	Old detector	New detector
PH6	Generator fan replacement	11/01/2017	0	1
HB5	Generator fan replacement	4/04/2018	0	1
BO1	Generator fan replacement	21/12/2018	0	0
Improvement	66%			

Table 13: : Improvement new detector over old detector.

Turbine	Failure	Date	Old detector	New detector
CV2	Rotor brush high temperature	29/09/2019	0	1
PH2	Rotor brush high temperature	29/09/2019	0	1
PH3	Rotor brush high temperature	28/06/2020	0	0
HBO4	Rotor brush high temperature	14/06/2018	0	1
BO1	Rotor brush high temperature	21/04/2020	0	0
Improvement	60%			

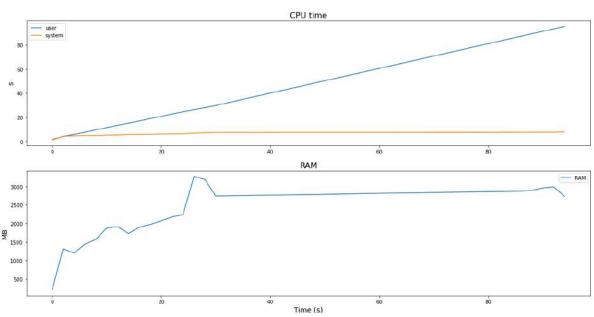
Conclusion:

Based on the results it can be concluded that the KPI has been achieved.

4: Processing Capability

KPI description:

There are two aspects being tested in this KPI. The first is the speed at which one complete data analysis by the complete pipeline can be done. The second is the number of turbines that are feasible to be analysed using the approach.


Results:

To test whether it is feasible to run the whole pipeline on standard server equipment, tests are conducted on data from three different wind farms (with different sizes). The wind farms are: FRHBO (4 wind turbines), FRBOU (6 wind turbines) and FRHBO+FRBOU (10 turbines). The last wind farm is an artificial one composed of the data from FRHBO and FRBOU. This new dataset can then be used as a proxy for larger wind farms, which should allow us to make an assessment of how well the pipeline scales to larger datasets.

The tests are run on standard server equipment: a VM running Ubuntu 20.04 LTS with 20 cores assigned from an Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz and 100 GB RAM. To validate the KPI a monitoring script is used that registers the user and system CPU time and also the RAM consumption by the process(es) that are created by the script. Since the different applications of the pipeline are run sequentially, meaning first the SCADA_Data_Cleaner, then the Anomaly_Detection, etc... each application demands resources sequentially. This means that the RAM consumption of the different applications should not be added up to get an idea of the RAM requirements of the pipeline. The CPU time on the other hand must be summed to get the CPU time of the pipeline.

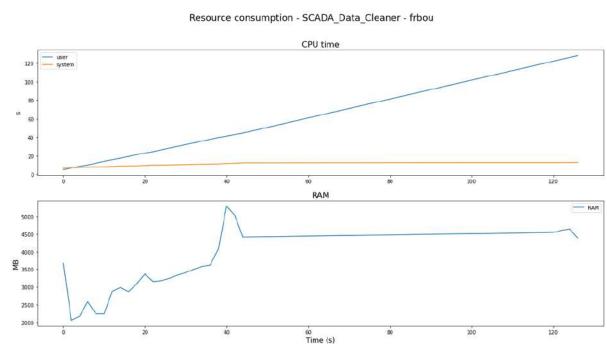
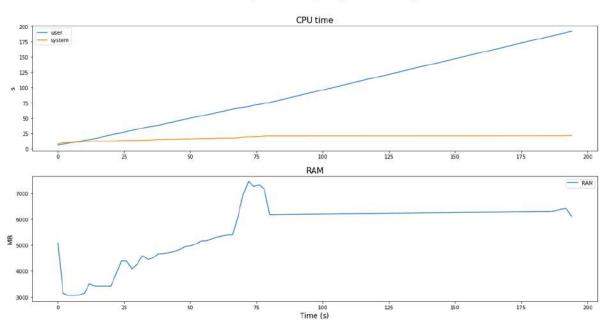

<u>SCADA_Data_Cleaner</u>

Figure 19, Figure 20 and Figure 21 show the resource consumption of the SCADA_Data_Cleaner for the processing of the data for resp. FRHBO, FRBOU and FRHBO+FRBOU. For FRHBO (4 turbines) the total CPU time is 103.16 s and the maximum RAM consumption is 3269.53 MB. For FRBOU (6 turbines) it is 141.07 s and 5290.18 MB resp.. And for the FRHBO+FRBOU (10 turbines) it is 213.51 s and 7440.78 MB resp.. This indicates that the SCADA_Data_Cleaner can easily be run on standard server equipment. Scalability is also not an issue.



Resource consumption - SCADA_Data_Cleaner - frhbo

Figure 19: Resource consumption by SCADA_Data_Cleaner for processing FRHBO data.

Resource consumption - SCADA_Data_Cleaner - frhbo_frbou

Figure 21: Resource consumption by SCADA_Data_Cleaner for processing FRHBO+FRBOU data.

Anomaly_Detection

Figure 22, Figure 23 and Figure 24 show the resource consumption of the Anomaly_Detection (if the models need to be trained) for the processing of the data for resp. FRHBO, FRBOU and FRHBO+FRBOU. For FRHBO (4 turbines) the total CPU time is 18669.59 s (divided over 20 cores, which equals a run time of 933.48 s on a 20-core CPU) and the maximum RAM consumption is 3972.05 MB. For FRBOU (6

turbines) the total CPU time is 40666.01 s (divided over 20 cores, which equals a run time of 2033.30 s on a 20-core CPU) and RAM consumption is 4584.17 MB resp.. And for the FRHBO+FRBOU (10 turbines) the total CPU time is 94566.45 s (divided over 20 cores, which equals a run time of 4728.32 s on a 20-core CPU) and RAM consumption is 5594.29 MB resp.. This indicates that the Anomaly_Detection can easily be run on standard server equipment. Scalability is also not an issue.

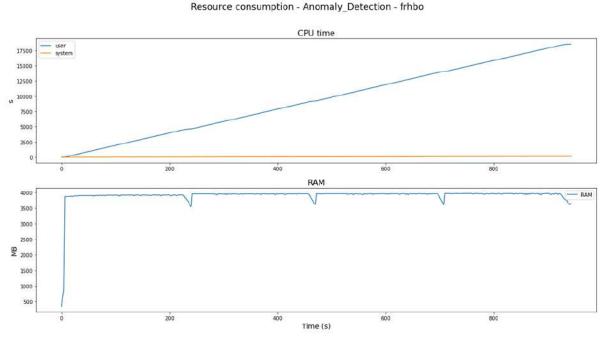
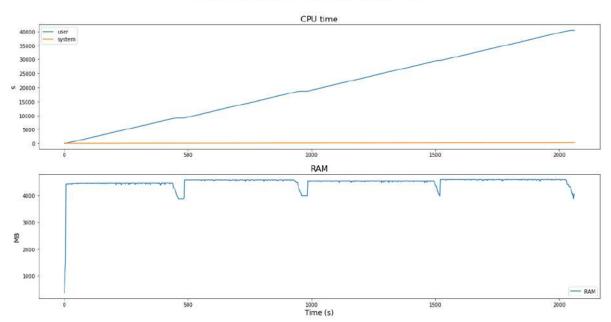
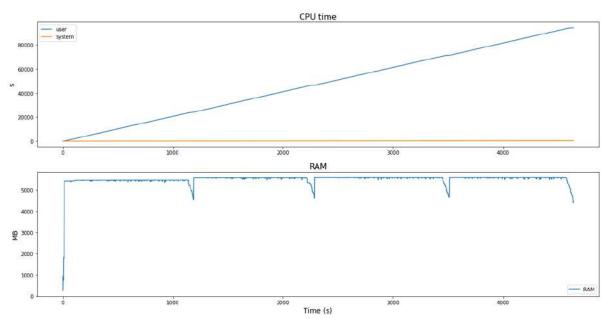




Figure 22: Resource consumption by Anomaly_Detection for processing FRHBO.

Resource consumption - Anomaly_Detection - frbou

Figure 23: Resource consumption by Anomaly_Detection for processing FRBOU.

Resource consumption - Anomaly_Detection - frhbo_frbou

Figure 24: Resource consumption by Anomaly_Detection for processing FRHBO+FRBOU.

Failure_Diagnosis

The Failure_Diagnosis app runs only for a very short time (< 1 s) and consumes only a small amount of RAM (< 200 MB) for all three datasets. This makes the contribution of this app to the resource consumption by the whole pipeline irrelevant.

<u>Root_Cause_Identifier</u>

Figure 22, Figure 23 and Figure 24 show the resource consumption of the Root_Cause_Identifier for the processing of the data for resp. FRHBO, FRBOU and FRHBO+FRBOU. For FRHBO (4 turbines) the total CPU time is 23.65 and the maximum RAM consumption is 143.91 MB. For FRBOU (6 turbines) the total CPU time is 39.86 s and RAM consumption is 160.22 MB resp.. And for the FRHBO+FRBOU (10 turbines) the total CPU time is 66.80 s and RAM consumption is 193.41 MB resp.. This indicates that the Root_Cause_Identifier can easily be run on standard server equipment. Scalability is also not an issue.

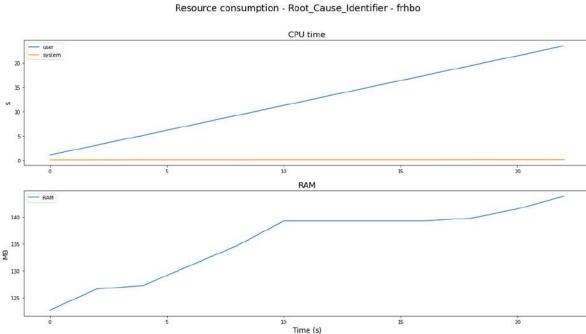
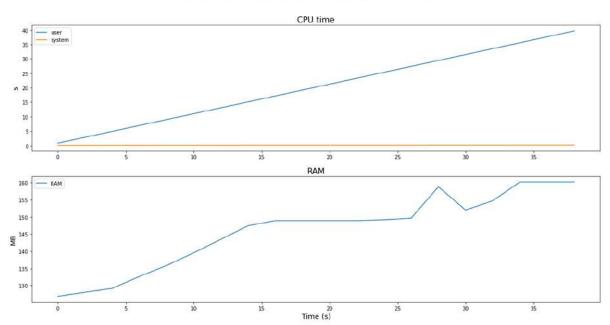
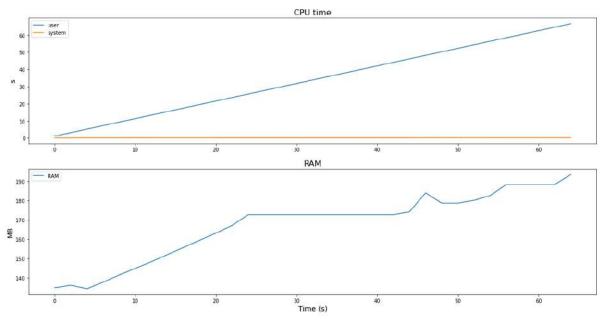
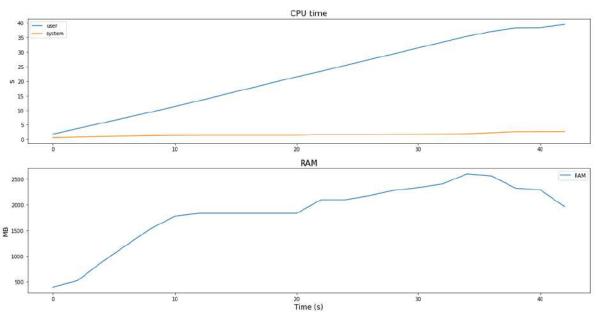




Figure 25: Resource consumption by Root_Cause_Identifier for processing FRHBO.

Resource consumption - Root_Cause_Identifier - frbou

Figure 26: Resource consumption by Root_Cause_Identifier for processing FRBOU.



Resource consumption - Root_Cause_Identifier - frhbo_frbou

Figure 27: Resource consumption by Root_Cause_Identifier for processing FRHBO+FRBOU.

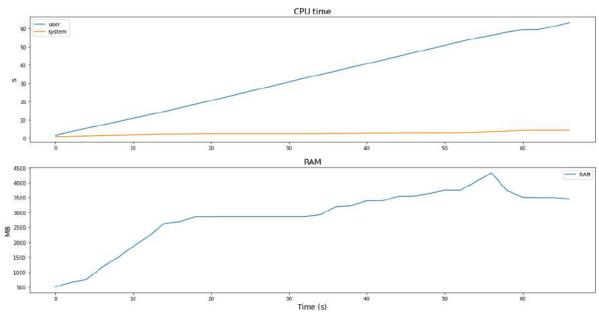

Dashboard_Preparation

Figure 28, Figure 29 and Figure 30 show the resource consumption of the Dashboard_Preparation for the processing of the data for resp. FRHBO, FRBOU and FRHBO+FRBOU. For FRHBO (4 turbines) the total CPU time is 42.09 s and the maximum RAM consumption is 2599.86 MB. For FRBOU (6 turbines) the total CPU time is 67.49 s and RAM consumption is 4325.06 MB resp.. And for the FRHBO+FRBOU (10 turbines) the total CPU time is 110.29 s and RAM consumption is 6841.83 MB resp.. This indicates that the Dashboard_Preparation subapp can easily be run on standard server equipment. Scalability is also not an issue.

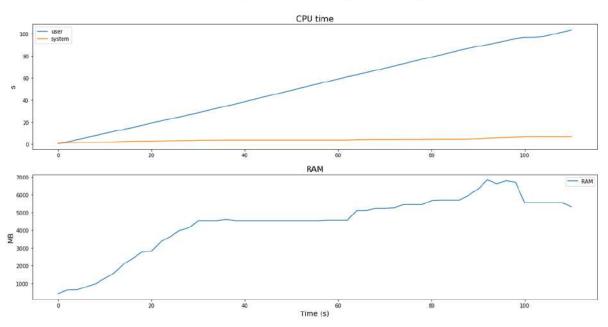

Resource consumption - Dashboard_Preparation - frhbo

Figure 28: Resource consumption by Dashboard_Preparation for processing FRHBO.

Resource consumption - Dashboard_Preparation - frbou

Figure 29: Resource consumption by Dashboard_Preparation for processing FRBOU.

Resource consumption - Dashboard_Preparation - frhbo_frbou

Figure 30: Resource consumption by Dashboard_Preparation for processing FRHBO+FRBOU.

The CPU time for executing the whole pipeline is:

- FRHBO: 18838.49 s.
- FRBOU: 40914.43 s.
- FRHBO+FRBOU: 94957.05 s.

The execution time on VM with 20 cores:

- FRHBO: 1102.38 s.
- FRBOU: 2281.72 s.
- FRHBO+FRBOU: 5118.92 s.

The maximum RAM consumption:

- FRHBO: 3972.05 MB.
- FRBOU: 5290.18 MB.
- FRHBO+FRBOU: 7440.78 MB.

Conclusion:

Running the data analytics pipeline on standard server equipment is feasible given the size of the ENGIE Senvion wind farms. Processing data from larger farms is also feasible. The part of the pipeline that scales the least is the Anomaly_Detection application. However, processing data from very large farms (>50 turbines) is still feasible on a standard server. If required, extra cores can be assigned to the Anomaly_Detection application, so that even lager farms can be processed in an acceptable time span. The RAM consumption does not seem to be a problem. For farm sizes comparable to those in the ENGIE Senvion dataset, this is not at all an issue.

KPI 5

KPI description:

The reduction in the maintenance cost of the wind turbine due to early fault detection. Less consequent damages are present and maintenance actions are clustered. Costs will be estimated by comparing cost of component replacement at detection to catastrophic failure. Revenues during additional time that the machine was able to run are subtracted from the maintenance costs.

To assess whether this KPI has been achieved, the most expensive failure case, the generator bearing failure, is discussed.

Assumptions:

- Rated power turbine = 2.05 MW.
- A generator bearing failure happens once every 10 years.
- Based on the performance of the data analytics toolbox, 3 out of 4 generator bearing failures can be detected.
- A generator bearing failure results in a downtime of 14 days, preventive maintenance of a damaged generator bearing results in a downtime of 1 day.
- The repair time when the generator bearing has failed is 3 days. If the bearing is replaced as part of a preventive maintenance than the repair time is 1 day.
- The price of labour = 1000 € / day.
- The price of electricity = 50 € / MWh.
- The capacity factor of the turbines = 0.2.
- The components that need to be replaced cost 15000 €.

Results: The expected costs due to generator bearing failures is without using the data analytics pipeline 2488.8 € / year for a turbine. If the data analytics pipeline is used the costs decrease to 1859.10 € / year. This corresponds to a cost reduction of 25.30%.

Conclusion:

The target value for KPI 5 was determined as 10-20% reduction in maintenance costs. The threshold value was set at 10%. The results show that the KPI is achieved.

KPI 6

KPI description:

PLATOON

The increase of the turbine availability due to faster actions triggered by better predictive maintenance. We focus on machines with an error.

Abs(Availability as is situation – Availability after usage of Platoon toolbox)

To validate whether this KPI has been achieved, we again use the generator bearing failure case.

Assumptions:

- A bearing failure happens once every 8 years.
- Based on the results of the data analytics toolbox, 3 out of 4 generator bearing failures can be detected.
- If a bearing fails it takes 3 weeks to repair the damage, if a bearing is replaced before failure it takes 1 day to repair.

Results:

- Increase of turbine availability for turbine CV5: 2.72%.
- Increase of turbine availability for turbine PH5: 2.42%.
- Increase of turbine availability for turbine HBO2: 3.34%.
- Increase of turbine availability for turbine HB3: 2.49%.

Conclusion:

The target value for KPI 6 was determined as 2-5% increase in availability. The threshold value was set at 2%. The results show that the KPI is achieved.

2.3 Conclusion

As a conclusion of the first validation, it can be drawn that the hybrid digital twin has reached the target KPIs regarding the modelling quality, integration, fault detection and processing capabilities. Furthermore, the results suggest a significant reduction of maintenance costs while the availability remains almost constant. Nevertheless, the results are not fully conclusive due to the assumptions made and would need to be further validated with the corresponding business units. The KPIs related to the VUB data analytics pipeline have all been achieved.

3. Pilot 2A Evaluation & Validation Report

3.1 Introduction

Electricity balancing is a set of actions and processes performed by a TSO to ensure that total electricity withdrawals (including losses) equal total injections in a control area at any given moment. Electricity production from solar and wind plants is subject to considerable forecast errors that drive the demand for accurate forecasting of production of electricity. At each point in time, total production, combined with interchange, i.e., export or import of energy from/to control area, must be equal to total consumption (LLUC-03) in order to stabilize system frequency and to maintain exchange at scheduled levels; it is therefore also called load-frequency control. If the system runs out of balance, power stability and quality will deteriorate, which may trigger the disconnection of system components, and ultimately, power blackouts.

In PLATOON Pilot #2a framework services were developed, integrated and deployed within the Institute Mihajlo Pupin (IMP) proprietary VIEW4 Supervisory control and data acquisition (system). The VIEW4 SCADA is deployed at many parts in the energy value chain in Serbia and the Region, however in PLATOON two plants are in the focus

- The Wind Plant Krnovo in Montenegro (LLUC-04)
- The PV Plant in Belgrade, Serbia (LLUC-05, LLUC-07)
- The VIEW4 SCADA deployed at the Joint Stock Company EMS (LLUC-03)

With the new Law^[1] that was introduced in 2021, independent producers (IPP) and producers from distributed and renewable sources (DER) are actors in the balance reserve market. The increasing number of renewable energy resources such as photovoltaic (LLUC-05, LLUC-07) and wind power plant (LLUC-04) has a significant impact on the stability and power quality of electricity transmission. Therefore, one of the goals of Pilot 2a is to develop and test PLATOON services for more accurate prediction of renewable energy generation as well as more accurate load forecast. Finally, in pilot 2a we are interested in monitoring and analysing the output from the RES power plant for an asset management scenario (LLUC-07).

• ^[1] Law on Amendments to The Law on Energy ("Official Gazette of RS", No. 40/2021)

3.2 LLUC-2A-03-Load Forecasting

LLUC-3 was intended to provide load forecasting tool on the national level, so that precise energy dispatch and planning be carried out. This is crucial in order to maintain the grid stability. The focus was put on medium-term forecast, precisely day-ahead forecast with and hourly resolution, which is appropriate when forecast is intended to be utilized by energy dispatch optimization engine. Forecasting model was to designed to calculate output taking into consideration the previous 24-hour long hourly consumption and different time related parameters. Service itself is integrated with the PLATOON platform.

3.2.1 Evaluation and Validation

Within 2a LLUC-03, day-ahead hourly load forecaster on national level have been developed. It was designed as innovative hybrid model, a combination of kNN and convolutional neural networks (CNN). The model obtains load from the previous day and current time-related parameters, and provides forecasted Serbian national load.

During the training phase, highly precise national load was obtained directly from Serbian TSO. Similar data could be found on ENTSO-E Transparency platform. Nevertheless, data that is being sent to the platform is not equally precise. Therefore, in order to validate the model with the same data that was used during training process, so that performance of the model is not jeopardized, similar data is gathered in batches by IMP. Hence, validation is carried out continuously, but on the delayed data. Completely the same procedure with continuous validation could be applied to ENTSO-E or any other

data source in the future.

Since forecasted and real national load are time series by their natures, common performance measurements have been selected as the most representative for the validation purposes. As given in Annex of this document, the list of the relevant KPIs for this service is following:

- Mean Absolute Error (MAE)
- Mean Absolute Percentage Error (MPAE)
- Root Mean Square Error (RMSE)
- Root Mean Square Error Percentage (RNSEP)

Example of the forecasting model output is given in Figure 24 left, whilst in the right hand of the figure the errors through forecasting samples are given. It could be noticed that maximal absolute error is a bit more than 200kW which is quite small, taking into consideration that total load is approximately between 2400kW and 4500kW. Additionally, the current values of the KPIs are given in the table below. Similarly, to what was concluded in deliverable D4.4 Analytical Toolbox for Smart Grids, the model is quite precise and it could be utilized for load balancing on the national level.

KPI #	Description	Target Value	Actual Value	Comments
1a	Mean Absolute Error (MAE) [MW]	260	145	Updated values have been calculated on the validation
1b	Mean Absolute Percentage Error (MPAE)	10	3	data, and hence are representative for the
2a	Root Mean Square Error (RMSE) [MW]	260	195	purpose of load forecasting model performance. For all
2b	Root Mean Square Error Percentage (RNSEP)	10	4	four predefined KPIs, actual value is lower than the target one, resulting with the conclusion that the proposed solution fulfilled the requirements.

Table 14: LLUC-2A-03- KPIs evaluation

There, KPI evaluation on the complete validation period is given. Similarly, to what was concluded in deliverable D4.4 Analytical Toolbox for Smart Grids, the model is precise and it could be utilized for the load balancing on the national level. Model has achieved desired performances since for all four KPIs calculated performance is better than the target value. Moreover, validation service for daily KPI calculation has been developed and is continuously calculating forecasting performance. An example of the visualization of the corresponding results is given through visualization tool for validation purposes, presented in Figure 31.

Figure 31 - Visualization of validation results through validation visusualization tool

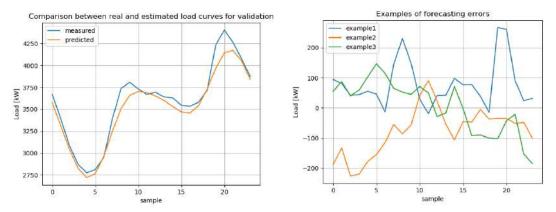


Figure 32 - Comparison between real and estimated load curves (left) and examples of forecasting errors (right)

3.3 LLUC-2A-04-RES Production Forecasting

Motivation for the development of RES production forecaster is similar as for the load one. Namely, with the goal of reducing the use of fossil fuels, renewable energy sources (RES), such as photovoltaic panels and wind turbines were introduced in the last decade. However, due to their high correlation with the stochastic meteorological conditions, it is not easy to match demand and production which is essential for maintaining the stable grid.

Hence, within LLUC-04 wind turbine production forecast was developed. Estimation was calculated based on the forecasted meteorological conditions by WeatherBit web service. Similarly, to use case 2A LLUC-03, day-ahead forecasting with hourly resolution was considered. The service was integrated with the rest of the platform through the data base i.e., all necessary inputs are obtained from the data base, and outputs are stored within the data base as.

3.3.1 Evaluation and Validation

As explained in deliverable D4.4 Analytical Toolbox for Smart Grids, a production forecaster based on LSTM neural networks has been developed, integrated and deployed. The example of different outputs of the production forecaster extracted from PLATOON MySQL is given in Figure 33. During the operation time, it was noticed that forecasting for some time was invalid, due to the fact that historical wind speed measurements corresponded to different height than the once from the WeatherBit service. Nevertheless, estimation of the wind speed at the considered height was evaluated as:

 $speed = speed_0/k * \ln (h/h_0)$

and service was updated accordingly.

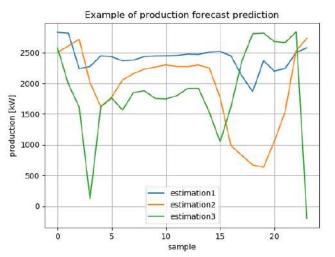


Figure 33 - LLUC-2A-04-Example of production forecast estimations

Since, forecasted and real production are time series by their natures, common performance measurements have been selected as the most representative for the validation purposes. As given in Annex of this document, the list of the relevant KPIs for this service is following:

- Mean Absolute Error (MAE)
- Mean Absolute Percentage Error (MPAE)
- Root Mean Square Error (RMSE)
- Root Mean Square Error Percentage (RNSEP)

Similar to the previous load forecasting service, production data is obtained in batches from Krnovo SCADA. Current KPIs could be seen in the table below and it could be observed that all KPIs are satisfactory. Namely, the model precision is relatively high, especially having in mind that the main input, wind speed, a highly fluctuating quantity, is only considered on an hourly basis.

KPI #	Description	Target Value	Actual Value	Comments
1a	Mean Absolute Error (MAE)	260	139	Due to the change in SCADA
	[MW]			system, it was impossible to
1b	Mean Absolute Percentage	10	8	obtain additional amount of
	Error (MPAE)			data for validation, and hence,
2a	Root Mean Square Error	260	159	no update could be provided
	(RMSE) [MW]			for production forecaster.

Table 15: LLUC-2A-04- KPIs evaluation

2b	Root Mean Square Percentage (RNSEP)	Error	10	10	Nevertheless, it is expected, in accordance with the performance that has already been analysed within WP4 and previous WP6 deliverables, that models are in achieving target performances.
----	--	-------	----	----	--

As it could be noticed from Figure 34, the service is successfully working and storing outputs in PLATOON MySQL DB.

phpMyAdmin	🗕 🛒 Server	localhos	t:3306 × 📑	Database: p	katoon_db »	Table: wind_pl:	ant_energy_production_fc	recast	111
<u> </u>	Browse	14 SI	tructure	SQL	Search	n 🧏 Insert	📑 Export 📑 Imp	ort 🤌 Oper	rations 💿 Tracki
Recent Favorites									
	Showing rows 0 - 24 (9792 total, Query took 0.0007 seconds.) [id: 9912 9883]								
information_schema	SELECT - PROM	wind_pl	ant_energy	production_f	precast' ORDE	H BY 'wind plant)	energy_production_forecast	', 'id' besc	
platoon_db									
Types in filter theses, Erter in scientifical K									
	1.4	> >	> Num	ber of rows:	25 🗸	Filter rows:	Search this table	Sort by key:	None
Assets			1 00000				A 461 80 10 10 10 10 10 10 10 10 10 10 10 10 10		
L control_area	1 Options								
country	+ Options +- T→		*	id = 1	system_id	timestamp_star	rt timestamp_end	value	created
Ally_weather_forecasts		Se Conv	Delete	9912	12	and an	0:00 2022-06-16 13:00:0	C.C. Martin	
in energy production	1000 33 12-20085				177				
fn_energy_production_2016	🗆 🥜 Edit :	Copy	Delete	9911	12	2022-06-16 11:0	0:00 2022-06-16 12:00:0	0 1609610.596	2022-06-15 13:59:42
in_energy_production_2017	🕞 🥜 Edit	👫 Сору	Delete	9910	12	2022-06-16 10:0	0:00 2022-06-16 11:00:0	0 1347497.070	2022-06-15 13:59:42
fn_energy_production_2018	C CEdit	Conv	O Delete	9909	12	2022-06-16 09-0	0:00 2022-06-16 10:00:0	0 1019352 478	2022-06-15 13:59:42
arid_status									
hourly_weather_forecasts	D /Edit	Se Copy	Delete	9908	12	2022-06-16 08:0	0.00 2022-06-16 09.00:0	0 595006.836	2022-06-15 13:59:42
market_role	🗆 🥒 Edit	Зе Сору	😊 Delete	9907	12	2022-06-16 07:0	0:00 2022-05-16 08:00:0	0 876815 186	2022-05-15 13:59:42
measurement_types	n 🥜 Edit	: Copy	😑 Delete	9906	12	2022-06-16 06:0	0:00 2022-06-16 07:00:0	0 1064031.982	2022-06-15 13:59:42
organization	nen	-		0005	(2)	2022 00 40 00-0	0.00 0000 00 40 00 00	. 4700000 000	2022 00 45 12:50 12
plants	C / Edit	St Coby	Deleto	9905	12	2022-00-16 05.0	0:00 2022-06 16 06 00:0	0 1188290.039	2022-00-15 13:59:42
pv_plant_energy_production	🖂 🥔 Edit	Copy	Delete	9904	12	2022-06-16 04:0	0:00 2022-06-16 05:00:0	0 2277884.521	2022-06-15 13:59:42
pv_plant_energy_production_forecast	D DEdit	Copy	Delete	9903	12	2022-06-16 03:0	0:00 2022-06-16 04:00:0	0 2297461.182	2022-06-15 13:59:42
pv_plant_energy_production_test	1991 19		Delete	9902	12	2022-06-16-02-0	0:00 2022-06-16 03:00:0	0 2277077 051	2022-08-15 13:50 /2
pv_plant_predictive_maintenance	O PEON	20007	Peloic	3302	12				
pv_plant_predictive_maintenance_alarm	🗆 🥔 Edit	Se CODY	Delete	9901	12	2022-06-16 01:0	0.00 2022-06-16 02 00 0	0 2283168.457	2022-06-15 13:59 42
	🗆 🥜 Edit	и Сору	😄 Delete	9900	12	2022-06-16 00:0	0:00 2022-06-16 01:00:0	0 2293160.645	2022-06-15 13:59:42
pv_plant_predictive_maintenance_w	C PEdit	Conv	Delete	9800	12	2022/06/15 22:0	0:00 2022-06-16-00-00:0	0 2296036 522	2022.06.15.12:50.42
pv_plant_weather_data	The second	e	C TOM STORES		12				
pv_plant_weather_data_test	🖂 🥜 Edit	Copy	Delete	9898	12	2022-06-15 22:0	0:00 2022-06-15 23:00:0	0 2242124.756	2022-06-15 13:59:42
E M res_integration	🗆 🥜 Edit	Copy	Delete	9897	12	2022-06-15 21:0	0:00 2022-06-15 22:00:0	0 2191077.637	2022-06-15 13:59:42
systems	n / Edit	Li Copy	Delete	9896	12	2022-06-15 20 0	0.00 2022-06-15 21 00:0	0 2069093,994	2022-06-15 13:59 42
system_types		-			074				
system_types_measurement_types	🗆 🥔 Edit	Be CODY	Delete	9895	12	2022-06-15 19 0	0 00 2022-06-15 20 00 0	0 1758831.787	2022-06-15 13:59 42
+_w weather_locations			Delete	9894			0:00 2022-06-15 19:00:0		

Figure 34 - LUC-2A-04- Illustration of production service filling in MySQL table

3.4 LLUC-2A-05-RES effect calculation

The objective of this use case is to analyse unexpected variations (voltage profile of the power system) before and after RES integration to the power system. Since the services need real-time data with high reporting rates of the grid status, a PMU is deployed at the Edge. In addition, analytics tools are also deployed at the edge.

3.4.1 Evaluation and Validation

Table 16: LLUC-2A-05- KPIs evaluation

KPI #	Description Target Value Actual Value		Actual Value	Comments		
1	Increase in PV insertio capacity	n > 100 %	150 %	KPI is calculated daily, therefore the minimal value is only reported in this table.		

The KPI was calculated in a few steps utilizing the data from the PMU and actual production of the installed PV ($P_n = 50 \text{ kWp}$). The service first measures the grid with PV and estimates the state of the grid without the PV. The main goal is to estimate the impedance of the line towards the substation from the measurements. According to the calculated impedance and maximally allowed voltage on the LV grid defined by standard EN-50160, the maximum PV power can be estimated (see Figure 35). Then, for each day, the insertion capacity is calculated. However, in the case of bad weather, the results are not reported due to higher uncertainty, hence some missing values can be seen. Finally, the insertion capacity is normalized to the installed PV plant, which is 50 kWp resulting in a KPI higher than 150 %, with an average value of more than 200 % (see Figure 36).

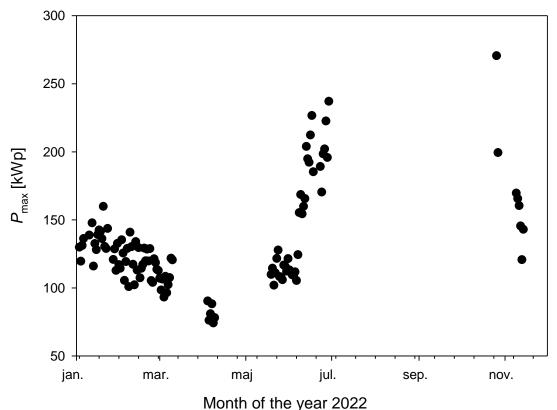


Figure 35: LLUC-2A-05- Maximal PV insertion capacity for the LV Grid.

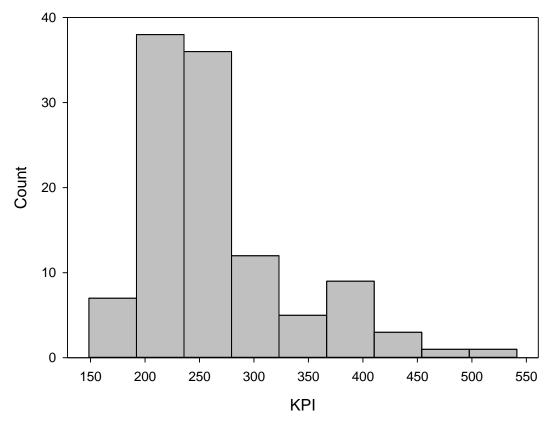


Figure 36: LLUC-2A-05- Histogram of calculated KPIs for the current year.

The service runs locally on the edge computer next to the existing PV plant using the edge-cloud framework as described in deliverable D4.2. The service is dockerized and executed once a day. The results are saved in the IMP SQL database on the central computer. In the future, we will monitor the execution of the service and analyze the reported results. This will be further evaluated to remove the results with higher uncertainty to get an even better insertion capacity estimation.

3.5 LLUC-2A-07-PV Predictive maintenance

The objective of this use case is to develop a set of data analytics tools that use existing data from sensors and whether to predict and monitor the degradation of the modules of PV plants.

3.5.1 Evaluation and Validation

KPI #	Description	Target Value	Actual Value	Comments
1	Saving costs	>0€	10.62 €	Calculated by injecting an
			(estimation)	error and estimating 3 days to
				notice a malfunctioning of
				inverter by periodic manual
				inspection.

According to the KPI template, all the steps to calculate the KPIs are already done. However, since the modules are still in good condition with an estimated degradation of around 1% (see Figure 37), the calculation has not yet triggered an alarm. Due to seasonal fluctuations in the performance of the PV plant, more data is needed to estimate the PV modules degradation more accurately.

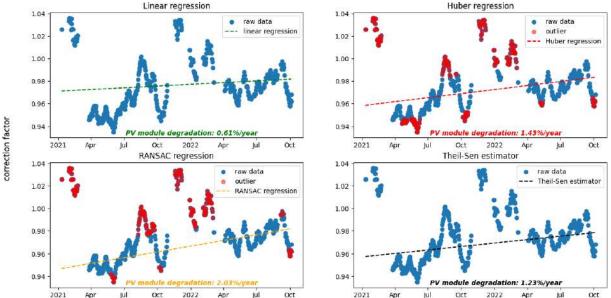


Figure 37: LLUC-2A-07- Daily calculated c.f. for the PV plant installed at IMP and estimated PV module degradation using different linear regression algorithms.

The calculation is done for two types of failures: on the one hand, the estimation of the failure of inverters that are constantly monitored and for which the alarm is triggered when an anomaly is detected, and on the other hand, the performance of the modules which is evaluated once per day. During the deployment period, none of the alarms was triggered, so the KPI for cost savings was not calculated. Therefore, we injected the error into the grid, by modifying the coil turn ratio on phase 2 on the PMU by factor 10. This means the live data was distorted and the service has successfully detected an error in phase 2, Figure 38.

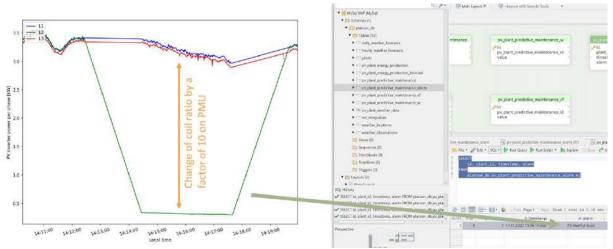


Figure 38: LLUC-2A-07- On the graph, live values of PV inject power as reported by PMU before, during and after changing the coil ratio and real-time query of an alarm from the database.

For final evaluation of KPI, we have assumed the following parameters:

- $N_{days_{estimate}} = 3$, the typical value if the manual inspection is performed periodically.
- *E*_{daily} = 60 kWh (one inverter, month November)
- Price = 0.059 €/kWhⁱ

From these parameters, the final KPI was evaluated:

KPI = 3*60 kWh*0.059kWh = 10.62 €

The grid is monitored every 5 minutes, so the estimate of the number of days after the estimate of failure $N_{days_after detectingfailure} = 0$ is valid. The service is dockerized and deployed to the edge computer next to the PV system. The service checks the voltages and the symmetry of the inverter-related powers for all three phases (see Figure 39), and can immediately report an alarm about the failure into IMP MySQL.

Figure 39: LLUC-2A-07- Part of code that constantly monitors the inverters and reports alarms to IMP MySQL.

3.6 Conclusions

Pilot 2a consists of four LLUC and most of those were validated even during the first validation period. However, for LLUC 7, which is related to predictive maintenance, it was not possible to estimate the corresponding KPI(s), since no maintenance was required due to good condition of the assets. Therefore, no problems were registered during the final stage of validation, error on the grid side was artificially injected and the service was validated, resulting with the satisfactory results. Additionally, within the previous version of this report, LLUC 3 and 4 were validated on the old data. Therefore, additional data was obtained for LLUC 3 and KPIs for different time intervals have been calculated. These KPIs showed even better performance of the service then estimated before, proving that target was achieved. Unfortunately, an additional amount of data for LLUC 4 was inaccessible, so no updates are present. Finally, it could be concluded that the final validation corroborated previous conclusions that all services are achieving desired performances.

4. Pilot 2B Evaluation & Validation Report

4.1 Introduction

This pilot consists in two Use Cases related with the electricity grid stability, connectivity and life extension of the components in a smart grid in ParcBit, Majorca (Spain). The ese cases defined within this pilot are the following:

- LLUC-2B-01 Predictive Maintenance for MV/LV Transformers.
- LLUC-2B-02 Detection of NTL in electrical grids.

4.2 LLUC-2B-01 Predictive Maintenance for MV/LV Transformers

This use case focuses on transformer predictive maintenance, estimating transformer components health and its maintenance costs, planning maintenance actions, monitoring transformer alarms and studying different grid scenarios in case of replacing old transformers or adding complementary transformers.

4.2.1 Evaluation and Validation

As stated in the D6.8, some of the KPIs defined had been replaced due to analyzed power transformers have not experienced any failures since their installation date, and the algorithms developed do not expect them to fail during the next years. So all the supervised metrics, in the confusion matrix (TP,TN,FP,FN) and the metrics derived from it as Cohen Kappa cannot be calculated. Because of this, Health models have been validated by the combination of model correlation parameters and testing the RUL and overload models against the Common Network Asset Indices Methodology ².

Table 18: LLUC-2B-01- KPIs evaluation

KPI #	Description	Target Value	Actual Value (SAM)	Actual Value (TECN)	Actual Value (IND)	Comments
1	Temperature estimation accuracy (%)	5%	1.05%	0.30%		A validation of different virtual sensor algorithms with different features has been done and the one with the best results has been reported (see results below).

² Ofgem. (2017). DNO Common Network Asset Indices Methodology.

14	Useful Life	Equal results	Results	Comparison with
14				standard
	Extension (years)	as standards	equal to	
			target.	calculations
				IEC60076-7 and
				CNAIM.
15	Predictive Mean	<5% of	All variables	Each model
	Error	variable value	<1%	variable must be
				evaluated.
16	Predictive Mean	<5% of	All variables	Each model
	Absolute Error	variable value	<1%	variable must be
				evaluated.
17	Predictive Mean	<5% of	All variables	Each model
	Percentage Error	variable value	<1%	variable must be
				evaluated.
18	Predictive Mean	<5% of	All variables	Each model
	Percentage	variable value	<1%	variable must be
	Absolute Error			evaluated.
19	Predictive Mean	<5% of	All variables	Each model
	Squared Error	variable value	<1%	variable must be
				evaluated.
20	Predictive Root	<5% of	All variables	Each model
	Mean Squared	variable value	<1%	variable must be
	Error			evaluated.
21	Correlation	0.85 or higher	All variables	Each model
	Coefficient R2		>0.9	variable must be
				evaluated.

Regarding the temperature estimation accuracy (%) of the top oil temperature virtual sensor, different algorithms with different features have been validated and a benchmarking analysis has been performed. The models of top oil temperature have been developed using distinct sensor configurations, going from low amount of necessary installed sensors to a configuration where all sensors need to be installed. This comparison allows future installations to decide the amount of investment on sensors depending on the required accuracy.

Table 19 shows the results of the models developed by SAM. The accuracy for each model is registered with %MAE and the test data comprises the 25% of the data that has been selected randomly.

Table 19: LLUC-2B-01- Sampol - Top Oli Temperature model results

Model	Train set MAE	Test set MAE
LV_load+Room_temp	2.07%	2.16%
LV_load+nearest_public_temp	3.55%	3.65%
LV_load+Room_temp+1Case_Sensor	1.30%	1.32%
Room_temp+1Case_Sensor	2.12%	2.42%
LV_load+Room_temp+1Case_Sensor+MV_load	3.55%	3.54%
LV_load+Room_temp +MV_load	2.12%	2.42%

The expected results are that the error decreases when using more sensors. However, the problem of the models that include MV load data is that the sensors have been installed and configured later than the rest. This implies that these models are trained with less data and obtains worse results than the rest.

Without installing the MV sensors, the best results are obtained when one of the case temperature sensors is installed. But in fact, the cost of this sensors must be considered due to the low difference of accuracy between models.

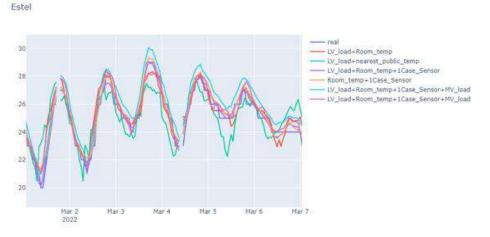


Figure 40: 2b-01 KPI 1 - Comparison of the temperature estimation between all trained models

On the one hand, regarding the models developed by Tecnalia the one that provided the best results provided a MAPE of 0.23%. The figure below shows the validation results of the best performing top oil temperature virtual sensor model over a period of 2 months (15/01/22 - 15/03/22). As it can be seen the predicted value (orange) is very close to the real value (blue). Also, it can be seen that there is a gap from 17/01/22 to 14/02/22 where there is no validation data. This was due to a problem with the integration of the current analyser in the primary winding of the transformer. For the final version of the deliverable (V2) the model will be validated with more recent data to confirm if the results are still comparable.

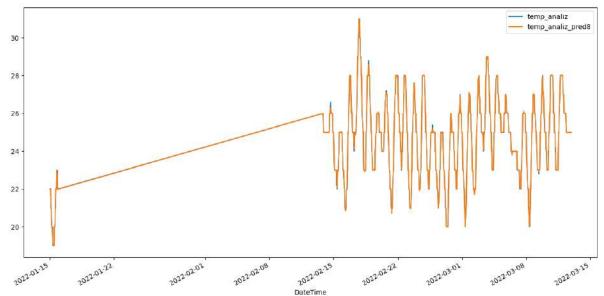


Figure 41 LLUC-2B-01- Top oil temperature virtual sensor best performing model validation results

Besides, regarding the predictive monitoring tools for electrical transformers, several functionalities regarding the and health-related issues that have been implemented so far. However, no real-time processing and validation has been done yet, so the application of the previously defined KPIs has not been possible until now. This document summarizes the evaluation and validation actions hitherto accomplished.

There is a fast model, (executing every 10 mins) and a slow model (executing every hour); the second one includes the last three signals from the table above. The models are trained using historical data (the training sample). Ideally, the dataset used as the training sample should cover the range of variation of those signals representing boundary conditions (i.e., ambient temperature or transformer power load).

As a result of the training, the tool displays a series of statistical indicators showing the accuracy of the estimation model in the case of every variable. These indicators include:

- ME (Mean Error)
- MAE (Mean Absolute Error)
- MPE (Mean Percentage Error)
- MAPE (Mean Percentage Absolute Error)
- MSE (Mean Squared Error)
- RMSE (Root Mean Squared Error)
- R2 (Correlation coefficient)

The following figure shows a sample of the results obtained for the previous accuracy indicators for some of the signals under analysis.

GENERAL MODEL SIGN	MODE	BUILDING						
DATA IMPORTING AND CLEANING	MODEL	TRAINING	TR	NINING RESULTS		VALIDATION RESULTS	\supset	
Model performance	sidual analysis							
Stationage	ME		MIN	102008	MIE	-16468	85	
TEMP1	0	0.024	0	0.002	0.001	0.03	1	
TEMP2	0	0.016	0	0.001	0	0.021	1	
TEMP3	0	0.02	0	0.001	0.001	0.026	3	
TEMP4	0	0.024	0	0.002	0.001	0.031	1	
TEMPS	0	0.029	0	0.001	0.001	0.037	1	
TEMP6	0	0.02	0	0.001	0.001	0.027	1	

Figure 3 LLUC-2B-01- Training results for the predictive model training

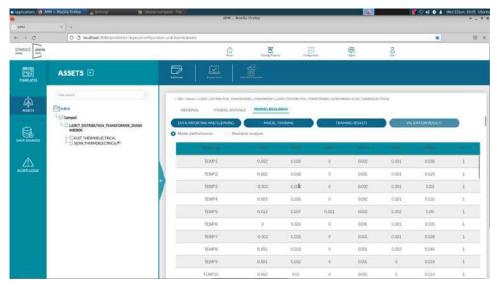


Figure 4: LLUC-2B-01- Validation results for the predictive model training

The results obtained in the training of the predictive model are quite good, thus anticipating a suitable fit in the future operation with real-time data. In addition, 30% of training selected points are randomly excluded from model training and used in an automatic validation. Results are similar to those in model training.

As far as the health-index related modules are concerned (replacement and overload calculations) the situation is similar since no real-time operation has been implemented yet. The modules have been designed and programmed and currently have undergone unitary tests, covering:

- Data model and conversion to different data formats (serialization and deserialization to protocol buffers or json)
- Data base interactions (get, insert, delete and update)
- General service (protocol buffer queries and serialization)
- Calculation functions

These tests have been run with actual data and compared with manual calculations according to each standard (CNAIM and IEC60076-7). Manual calculations have been previously validated with examples contained on standard definitions. For results testing purposes, calculations of each standard have been separated in several functions:

- IEC60076-7:
 - o Theta0
 - o ThetaHs
 - o DeltaH1
 - o DeltaH2
 - o Aging factor
 - o Actual Relative S to nominal apparent Power
 - o Overaging
 - o Whole combined calculation
- CNAIM:
 - o Location factor
 - o Duty factor
 - o Observed condition
 - o Oil Condition
 - o Dissolved Gases Condition
 - o Furfurladehyde oil condition
 - o Initial Health score
 - o Estimated health score along time
 - o Financial consequences factor
 - o Financial estimation of time to change
 - o Whole combined calculation

The accuracy of calculation software tests is over 99%.

In the case of the models developed by TECNALIA, the final top oil temperature model has been developed with a random forest regressor which input features have been:

- \checkmark The active energy at the secondary winding of the transformer
- ✓ The 8 temperatures at the outside of the transformer casing
- ✓ The temperature, humidity and pressure inside the transformer cabinet
- \checkmark The temperature, humidity and pressure outside the transformer cabinet

All these features have been used in hourly periods, downsampling the available values where needed.

On average, and taking into account the total number of registers available for each transformer, 619 for W, 2815 for Lleret and 3466 Estel) the average error of the model is 0.30%, much lower than the error obtained applying the IEC 60076-7 standard to predict TOT temperature, which is the 7.20%.

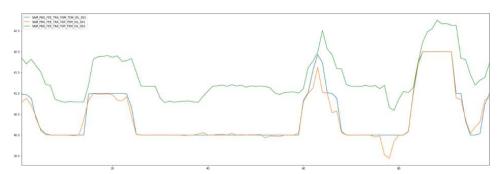


Figure 21. TOT real sensor (blue line), TOT virtual sensor (orange line) and TOT IEC model (green line) values for the W transformer

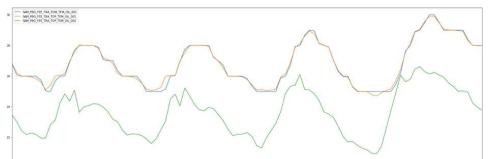


Figure 22. TOT real sensor (blue line), TOT virtual sensor (orange line) and TOT IEC model (green line) values for the Lleret transformer

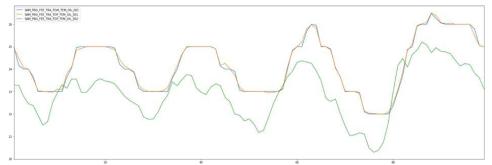


Figure 23. TOT real sensor (blue line), TOT virtual sensor (orange line) and TOT IEC model (green line) values for the Estel transformer

For the HST calculation, TECNALIA has applied a model based on the exponential equations of the IEC 60076-7 standard. This model has been fed with the hourly measurements of the previous and current load factor (Q) and TOT temperature, and the model parameters have been set to the advised values provided by the IEC 60076-7 standard itself, for small size ONAN transformers.

The obtained results for the HST temperature shows that the HST temperatures are very low.

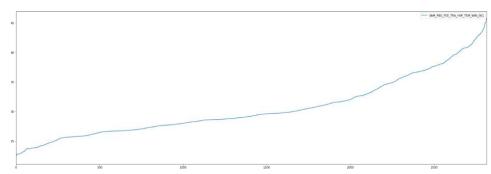


Figure 24. HST temperatures (°C) in ascending order for the Lleret transformer

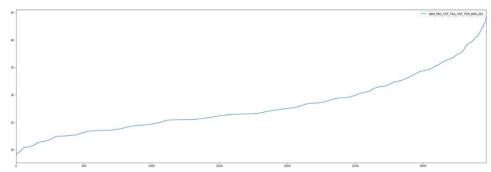


Figure 25. HST temperatures (°C) in ascending order for the Estel transformer

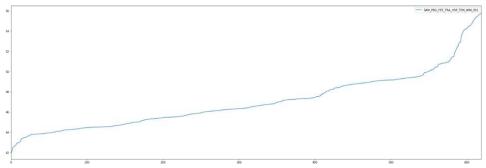


Figure 26. HST temperatures (°C) in ascending order for the W transformer

The reason for these low temperatures is the relatively low load factor to which the transformers are charged.

Average (%)	Lleret	Estel	W
load_factor	6.55	7.67	29.58
HST_factor	36.79	31.64	46.11

Table 15. Load and HST factor for each transformer.

These results show that As transformers are very underloaded, HST factor is far below its rated maximum value (65 °C over ambient temperature). This HST factor is the maximum temperature difference over ambient temperature that the manufacturer guarantees, when the transformer is operated at rated load factor (100%).

The following figures illustrate both the load factor and the HST factor in boxplots, to show the correlation between low load factors and low HST factors.

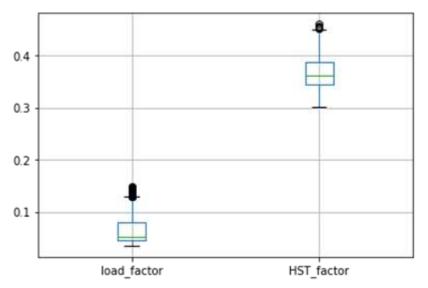


Figure 27. Load and HST factors for the Lleret transformer

Figure 28. Load and HST factors for the Estel transformer

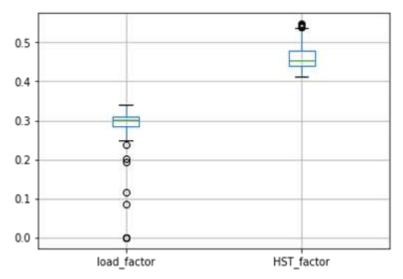


Figure 29. Load and HST factors for the W transformer

Finally, with the HST temperatures the loss of life of each transformer was calculated.

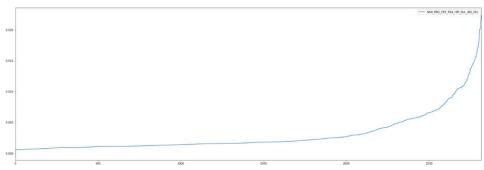


Figure 30. Loss of life (min) in ascending order for the Lleret transformer

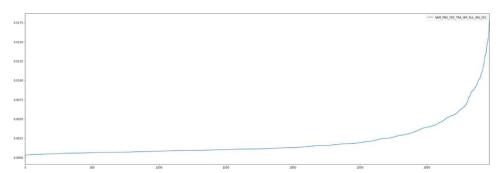


Figure 31. Loss of life (min) for the Estel transformer

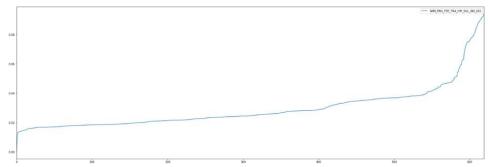


Figure 32. Loss of life (min) for the W transformer

On average, for all the hourly periods for which we have had data for each transformer, the loss of life for each hourly period has been almost insignificant. Even in the case of W, which the transformer with the highest average load factor, the degradation of the insulation health during the test period has been so low that we can conclude that it has not been degraded.

Loss of life (seg)	Lleret	Estel	W
Hourly average	0.18	0.12	1.76

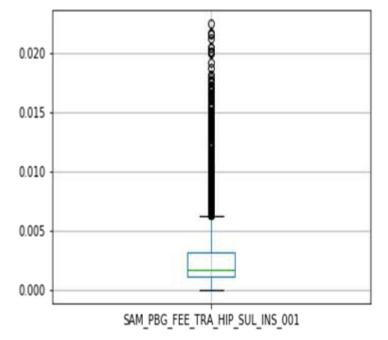


Figure 33. Boxplot of loss of life (min) for the Lleret transformer

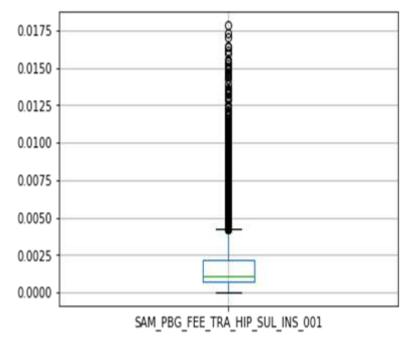


Figure 34. Boxplot of loss of life (min) for the Estel transformer

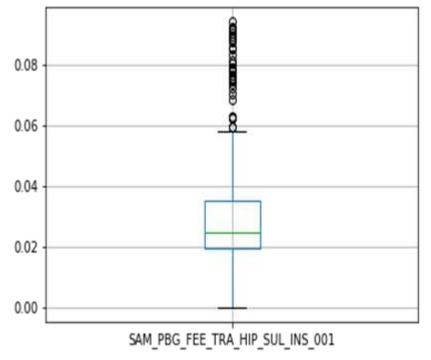


Figure 35. Boxplot of loss of life (min) for the W transformer

4.3 LLUC-2B-02 Detection of NTL in electrical grids

The main objective of this use case is to develop a tool for the quantification of losses in the distribution grid of a DSO and the detection of non-technical losses (NTL), using the available smart meter data.

4.3.1 Evaluation and Validation

In the previous version of this deliverable, and due to the validation method adopted of introducing synthetic anomalies into the dataset, the originally defined target values became outdated. As synthetic data is introduced for validation purpose, the target values should be adjusted because the final dataset with synthetic data implies that results of all KPI will be artificially modified.

The modification is simple, as the synthetic data is known (Created with the methodology explained below), the effects of it over the KPI can be calculated. For example, in the global losses energy percentage (KPI-01), the target value has to be increased with all the energy consumption that is added with the synthetic data. For the confusion matrix, the expected true positives are known, as they are the number of anomalies introduced, the same for the TN.

All the target values have been modified to be significative after the addition of the synthetic data, considering the original values.

KP	Descripti	Target	Previous	Actual	Actual	Actual	Actual	Comments
I #	on	Value	Values	Value,	Value,	Value,	Value,	

Table 20: LLUC-2B-02- KPIs evaluation

			(Comm - 1	Correct-	Correct	Tecnalia	Induc]
			(Sampol	Sampols	Sampols		Indra	
			last	update	New RC	models	models	
			delivere	model	Model			
			d Model)	fine				
				tuned				
1	Global	<30%	25.61%	25.61%	25.61%	25.61%	15.76% ³	Calculated with the
	Losses							synthetic data,
	Energy							average between all
	Percenta							loops. This value is
	ge							calculated using all
								the available data,
								target and actual
								values are bigger
								than the expected
								because prosumers
								data sometimes is
								not sent by the
								prosumer smart
								meters. IND results
								filter some meters
								in one of the
								concentrator
								(Estel).
2	NTL	<15%	11.26%	11.26%	11.26%	11.26%	1.43%	Calculated with the
2		<15%	11.20%	11.20%	11.20%	11.20%	1.45%	
	Energy							synthetic data,
	Percenta							average between all
	ge							loops. Addition of
								Customer and Non-
								Customer NTL
								percentage. IND
								results filter some
								meters in one of the
								concentrator
								(Estel).
3	TL Energy	<25%	14.35%	14.35%	14.35%	14.35%	14.35%	Calculated with the
	Percenta							original data. This
1	ge							value is calculated
								using all the
1								available data,
								target and actual
1								values are bigger
1								than the expected
								because prosumers
								data sometimes is
								not sent by the
L								, -

								prosumer smart
								meters.
4	Customer NTL Energy Percenta ge	<10%	1.43%	1.43%	1.43%	1.43%	1.43%	Calculated with the synthetic data, average between all loops.
5	Non- customer NTL Energy Percenta ge	<10%	9.83%	9.83%	9.83%	9.83%	0%	Calculated with the synthetic data, average between all loops. Indra models' do not detect non-NTL fraud, so the cannabinol synthetic data was removed.
6	True positives (TP)	>7.45 %	1.64%	4.03%	8.10%	6.56%	3.47%	Numberofanomaliesdetectedcorrectly.There are99anomalouspatternsaddedwiththe syntheticdataset,this impliesthatthe9,06%ofthevaluesisanomalous.
7	False Positives (FP)	<8.96 %	18.39%	1.19%	11.39%	36.81%	9.82%	Anomalies detected not generated at synthetic data.
8	False Negatives (FN)	<2.29 %	3.01%	4.57%	4.08%	2.49%	5.58%	Anomalies not detected by the algorithms.
9	True Negatives (TN)	>81.3 %	76.48%	89.75%	76.45%	54.13%	81.11%	Normal behaviour data with no anomalies detected. There are 994 non anomalous patterns at the synthetic dataset.
10	Specificit y (%)	>70%	80.62%	98,69%	87.03%	46.3%	89.2%	The algorithm does detects 90% of the anomalies.
11	Sensitivit y (%)	>52%	35.29%	46.81%	66.66%	86.6%	38.4%	The algorithm classifies 80% non- anomalous smart meters correctly.

12	Cohen's Kappa (%)	>50%	6.2%	55.37%	42.60%	27%	22.79%	It is a low value of kappa. But can still be valid until there is no stablished limit.
13	Economic Savings (€)	-	215€	529€	1063€		380,82€	Calculated as the average detection of synthetic anomalies multiplied by the average KWh price between iterations of validation. IND Calculated as the average of losses multiplied by the average KWh price for business.

As there are no real anomalies classified in the past, to validate this use case, a synthetic anomaly generator has been developed. It is based on the work done at ⁱⁱ to generate two types of anomalies: shunt and interrupted shunt, and to model cannabinol farms with energy demand curves dependent on plants cultivating periods, as this is one of the most common tapping NTL patterns⁴.

The synthetic data has been generated in a loop until 94 anomalies are generated (this number is calculated using Cochran technique ⁱⁱⁱ to assure that the results are statistically significant). This strategy avoids the introduction of too much simultaneous anomalies. It is not expected that a big number of prosumers starts developing fraud during the same period. Each loop follows the next steps:

- 1. The percentage of anomalous smart meters is selected to be between [5%,10%] of the total number of smart meters registered.
- 2. Generate between 0 and 2 cannabinol farms started in a date randomly selected from the range [2022-01-01, 2022-06-01] and of farm size randomly chosen between 5 and 10 square meters, also a random moment of production at connection time.
- 3. Each anomaly starts in a date randomly selected from the range [2022-01-01, 2022-06-01].
- 4. The anomaly type is selected randomly between shunt and Interrupt shunt.
- 5. The effect of the shunt is randomly selected from the range [25%,85%].
- 6. The anomalies created using the interrupt shunt technique, are generated with an interrupt coefficient selected randomly from the range [50%,90%].
- 7. Detect the anomalies using the synthetic data.

⁴ Mehboob, N., Farag, H. E., & Sawas, A. M. (2020). Energy consumption model for indoor cannabis cultivation facility. IEEE Open Access Journal of Power and Energy, 7, 222-233

8. Clear anomalous noise and go back to step 1.

The improvement of energy losses evaluates the reduction of technical energy losses in the distribution network. The Platoon project is not addressing the actions that can be implemented in order to minimize them, but the objectives are aimed at the implementation of new or improvements in existing algorithms for their detection and identification with the evident purpose of designing subsequent actions for their reduction (outside the project scope).

Another objective is to deploy these algorithms at the node level so that the detection of these possible losses is carried out at the local level, thus minimizing the volume of data that must be sent to the central systems for its calculation, the capacity of processes in these central systems therefore the necessary calculation times.

During the second validation phase, Sampol included a new method based on Reservoir computing and fine-tuned the previous model. The results obtained by the fine-tuned version of the first tool passed all the KPI thresholds, and just 3 of them were below the objective, nearly reaching it.

In parallel to the fine tuning, the Reservoir computing version was developed. Reservoir Computing is a type of neural network with a special way of training process. This are initiated randomly and the only training is done to the last layer of the network as it was a linear regression, so the computational cost is the cost of inverting a matrix. This implies that it can be trained at edge.

Validation of new developments of the NTL identification model:

Validation of the Shunt fraud events detection:

Tables 15 and 16 present the performance metrics (TP, FN, FP, TN, Specificity [0, 1], Sensitivity [0, 1]) per use case and iteration (fraud file) for the Shunt fraud events detection. For W, 4 different fraud files for Shunt are created, 23 for Lleret and 17 for Estel. Note that the detection is referred to daily fraud events.

	W	LLERET	ESTEL
True Positives	[7, 7, 3, 7]	[0, 1, 1, 0, 0, 0, 2, 1, 3,	[38, 74, 69, 87, 64, 66,
		1, 1, 1, 0, 0, 0, 0, 0, 1, 0,	74, 29, 73, 26, 13, 89,
		0, 0, 1, 0]	86, 6, 0, 94, 55]
False Negatives	[117, 102, 36, 100]	[96, 105, 69, 62, 90, 16,	[0, 53, 5, 45, 19, 27, 5,
		136, 103, 138, 139, 78,	0, 37, 0, 0, 46, 39, 0,
		106, 39, 52, 60, 25, 89,	114, 50, 0]
		132, 22, 18, 2, 123, 42]	
False Positives	[0, 0, 0, 0]	[0, 1, 0, 0, 0, 0, 1, 0, 1,	[0, 0, 1, 1, 0, 0, 1, 0, 0,
		0, 0, 1, 1, 0, 0, 1, 0, 0, 0,	1, 1, 0, 0, 0, 0, 0, 0]
		1, 0, 0, 0]	

	[27, 42, 108, 44]		
True Negatives	[27, 42, 108, 44]		[48, 8, 43, 2, 39, 31, 42,
		12, 45, 9, 11, 70, 41,	48, 22, 47, 47, 3, 10,
		108, 96, 88, 122, 60,	48, 18, 1, 48]
		18, 126, 129, 146, 25,	
		106]	
Specificity	[1.0, 1.0, 1.0, 1.0]	[1.0, 0.97, 1.0, 1.0, 1.0,	[1.0, 1.0, 0.98, 0.66,
		1.0, 0.92, 1.0, 0.9, 1.0,	1.0, 1.0, 0.98, 1.0, 1.0,
		1.0, 0.97, 0.99, 1.0, 1.0,	0.98, 0.98, 1.0, 1.0, 1.0,
		0.99, 1.0, 1.0, 1.0, 0.99,	1.0, 1.0, 1.0]
		1.0, 1.0, 1.0]	
Sensitivity	[0.05, 0.06, 0.07, 0.06]	[0.0, 0.0, 0.01, 0.0, 0.0,	[1.0, 0.58, 0.93, 0.66,
		0.0, 0.01, 0.0, 0.02, 0.0,	0.77, 0.71, 0.93, 1.0,
		0.01, 0.0, 0.0, 0.0, 0.0,	0.66, 1.0, 1.0, 0.65,
		0.0, 0.0, 0.0, 0.0, 0.0,	0.68, 1.0, 0.0, 0.65, 1.0]
		0.0, 0.0, 0.0]	

As can be observed in Table 15, the specificity is high in all use cases, i.e., there are few false positives, and the sensitivity is low in Lleret and W, which means that there are many false negatives. Nevertheless, it works well as an offline fraud detection tool in which the main objective is decide if fraud events are committed in a period.

Table 16 presents the performance metric results per use case without the step 1 of removal of FPs. As can be observed, the sensitivity metric has increased because more True Positives are detected, but the specificity decreases as more FPs arise.

	w	LLERET	ESTEL
True Positives	[124, 108, 37, 107]	[44, 105, 25, 62, 31, 12,	[38, 82, 73, 132, 64, 73,
		94, 45, 84, 22, 68, 107,	78, 29, 84, 26, 13, 134,
		39, 11, 0, 19, 0, 1, 8, 18,	119, 6, 0, 129, 55]
		0, 42, 0]	
False Negatives	[0, 1, 2, 0]	[52, 1, 45, 0, 59, 4, 44,	[0, 45, 1, 0, 19, 20, 1, 0,
		59, 57, 118, 11, 0, 0,	26, 0, 0, 1, 6, 0, 114, 15,
		41, 60, 6, 89, 132, 14,	0]
		0, 2, 82, 42]	

False Positives	[15, 8, 12, 8]	[36, 14, 15, 18, 28, 18,	[15, 3, 17, 3, 16, 10, 3,
		5, 6, 2, 0, 46, 14, 108,	21, 8, 19, 18, 0, 4, 13, 0,
		19, 0, 43, 0, 0, 40, 47, 0,	0, 0]
		8, 0]	
True Negatives	[12, 34, 96, 36]	[17, 29, 64, 68, 31, 114,	[33, 5, 27, 0, 23, 21, 40,
		8, 39, 8, 11, 24, 28, 1,	27, 14, 29, 30, 3, 6, 35,
		77, 88, 80, 60, 18, 86,	18, 1, 48]
		83, 146, 17, 106]	
Specificity	[0.44, 0.81, 0.89, 0.82]	[0.32, 0.67, 0.81, 0.79,	[0.68, 0.625, 0.61, 0.0,
		0.52, 0.86, 0.61, 0.86,	0.59, 0.68,
		0.8, 1.0, 0.34, 0.66, 0.0,	0.9302325581395349,
		0.80, 1.0, 0.65, 1.0, 1.0,	0.56, 0.63, 0.60, 0.62,
		0.68, 0.63, 1.0, 0.68,	1.0, 0.6, 0.73, 1.0, 1.0,
		1.0]	1.0]
Sensitivity	[1.0, 0.99, 0.95, 1.0]	[0.45, 0.99, 0.35, 1.0,	[1.0, 0.65, 1.0, 0.77,
		0.34, 0.75, 0.68, 0.43,	0.78, 0.98, 1.0, 0.76,
		0.59, 0.15, 0.86, 1.0,	1.0, 1.0, 0.99, 0.952,
		1.0, 0.21, 0.0, 0.76, 0.0,	1.0, 0.0, 0.89, 1.0]
		0.0, 0.36, 1.0, 0.0, 0.34,	
		0.0]	
		-	

Validation of the Cannabinol fraud events detection:

As commented the procedure to detect the cannabinol fraud events is the same as in the Shunt fraud detection. In Table 17 the performance metric results obtained after the 1st (Detect false positive fraud events) and 2nd (Fraud detection) steps are shown. Table 18 presents the performance metric results without the removal of FPs (step 1). Note that the results are presented per case study and iteration and refer to daily fraud events. In this simulation, there are 6 files, i.e., iterations, for W, 3 for Lleret and 6 for Estel.

Table 18. Performance metrics per use case after the removal of False Positives (step 1) for Cannabinol detection.

	W	LLERET	ESTEL
True Positives	[4, 4, 4, 3, 7, 6]	[0, 0, 0]	[53, 66, 69, 64, 23, 43]

False Negatives	[50, 101, 88, 10, 108, 77]	[53, 15, 24]	[31, 46, 36, 41, 0, 0]
False Positives	[1, 1, 1, 1, 1, 1]	[1, 1, 1]	[1, 1, 1, 1, 1, 1]
True Negatives	[93, 42, 55, 133, 35, 66]	[94, 132, 123]	[25, 5, 16, 11, 47, 47]
Specificity	[0.99, 0.98, 0.98, 0.99, 0.97, 0.98]	[0.99, 0.99, 0.99]	[0.96, 0.83, 0.94, 0.91, 0.97, 0.97]
Sensitivity	[0.07, 0.04, 0.04, 0.23, 0.06, 0.07]	[0.0, 0.0, 0.0]	[0.63, 0.59, 0.65, 0.61, 1.0, 1.0]

Table 19. Performance metrics per use case without the removal of False Positives (step 1) for Cannabinol
detection.

	W	LLERET	ESTEL
True Positives	[54, 105, 92, 13, 115, 83]	[53, 15, 24]	[64, 91, 86, 82, 23, 43]
False Negatives	[0, 0, 0, 0, 0, 0]	[0, 0, 0]	[20, 21, 19, 23, 0, 0]
False Positives	[94, 43, 56, 134, 36, 67]	[95, 133, 124]	[8, 3, 6, 4, 18, 18]
True Negatives	[0, 0, 0, 0, 0, 0]	[0, 0, 0]	[18, 3, 11, 8, 30, 30]
Specificity	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0]	[0.0, 0.0, 0.0]	[0.69, 0.5, 0.65, 0.66, 0.62, 0.62]
Sensitivity	[1.0, 1.0, 1.0, 1.0, 1.0, 1.0]	[1.0, 1.0, 1.0]	[0.76, 0.81, 0.82, 0.78, 1.0, 1.0]

As can be observed, the results follow the same trend as in Shunt fraud detection. The step 1 in which the FP are removed works well at the expense of detecting less TPs. The specificity is high but the sensitivity low. On the contrary, the sensitivity is high if the step 1 is not applied because more TPs are detected. However, the number of daily FPs are also higher. Note that the best achieved results are encountered for Estel.

4.4 Conclusion

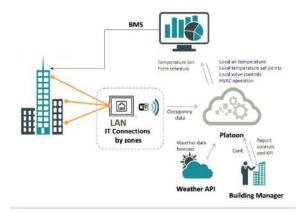
Tests have been conducted both in the case of the predictive module training and unit tests for the health-related modules.

Regarding the validation of LLUC-2B-01 Predictive Mantainance of power transformers, the results of the top oil temperature virtual sensors are successful. The KPI related with the confusion matrix, and so on defined as supervised were unable to obtain. To validate the developed tools, a new set of KPI have been defined and passed successfully.

Regarding the validation of LLUC-2B-02 NTL detection use case, due to the lack of fraud data the developed models have been validated using synthetic data. The new models developed increased the True Positives and passed all the KPI thresholds, most of them getting over the target values. The Sampol fine-tuned first tool seems to be the more efficient as the false positives obtained are the lowest, and with the better results in specificity and Cohen's kappa, but the true positive KPI is lower than the one obtained by the Tecnalia and Sampol's new models, that also obtains higher False Positives. Depending on the availability of the DSO it may be more useful to first analyse the anomalies found by the Sampol's fine tunned first model and then use the other tools to analyse further NTL detected cases.

5. Pilot 3A Evaluation & Validation Report

5.1 Introduction


Pilot 3a is related to the ENGIE Lab CRIGEN building office located in the Paris region. The office has a Building Management System (BMS) controlling the HVAC and comfort in different zones of the building. Two low level use cases have been developed within the scope of this pilot:

- LLUC-3A-01-Optimizing HVAC control regarding occupancy.
- LLUC-3A-02-Provide demand response services through building inertia and HVAC controls.

5.2 LLUC-3A-01-Optimizing HVAC control regarding occupancy

This use case aims to provide an optimized operation schedule for each day of the week for the office building and its different zones based on the occupancy in the building and the comfort level required by the occupants. The HVAC optimization and control aims to:

- Optimize the building energy consumption.
- Maximize the comfort of occupants with the best energy efficiency.
- Automate HVAC system control and reduce manual intervention on system controls.

Figure 42: Pilot 3A LLUC01 schema

Different challenges were encountered in the implementation of the LLUC 01 and required updates and extra work on the use case:

- Quality of the input data and extra treatment required to assess the occupancy of the different zones in function of IT data connexion. Some extra data treatments were required, and a new service called "Tool 0" has been developed to get the actual occupancy status in the different rooms of the building in order to provide accurate occupancy status for the building occupancy forecaster.
- Heating and cooling of the building proved to operate not properly / exactly as expected. For heating and cooling, the local regulation was not often used in certain rooms (heating/cooling through ventilation and internal heat gain for example). Some of the controllers have schedule/setpoint problems that didn't really fit with a normal operation of the building. The data collected for the Data analytics model is then not so relevant.
- Challenges of managing heating and cooling (differences in the data), building operating both in heating and cooling at the same time with a regulation that is not optimal.

Sending orders to the BMS faced some protocols and technical difficulties that have been successfully resolved. After an important focus to tackle this subject in order to fully test the technologies developed within Pilot 3A use cases on the real system "the office building", it is now possible to send the Tool 2 pre-heating and pre-cooling schedules to the BMS and to control the temperature setpoints in the different zones of the building.

5.2.1 Evaluation and Validation

 $21 \mbox{An implementation}$ has been conducted to collect and integrate the IT (from wifi and LAN) data required within the platform Pilot 3A , and to implement the pipelines and the AI services .

Some updates of the and the data pipeline have been performed to have the full environment with all the architectural components required to run efficiently the use case.

As explained in deliverable D4.5 Analytical Toolbox, three services have been developed withing this LLUC to create the building occupancy, to forecast the occupancy status in the different zones of the building and to project the occupancy status for pre-heating and pre-cooling purposes. Below presented an example of the tools results

• Building occupancy data status creation

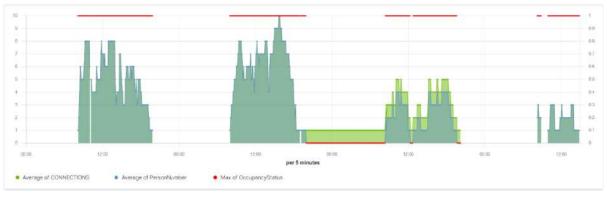


Figure 43: Building's 1st floor South-West area occupancy status data

The number of connections is in light green and the number of persons is in dark green. The corresponding scale is on the left. Most of the time the number of persons is considered as equal to the number of connections. During one night one suspicious connection occurring during the non-working hours is identified. During the following working hours the number of person is scaled down by one unity.

Figure 44:Building's occupancy status data

The number of connections is in light green and the number of persons is in dark green. The corresponding scale is on the left. Most of the connections at the building level are not related to working hours. The occupancy status is in red. The corresponding scale is on the right (1 stands for occupancy and 0 for inoccupancy). The output of Tool 0 feeds Tool 1.

• Forecast the occupancy status

				per 5 minutes			
00.00	12.00	00.00	12:00	- 00:00	12:00	00.00	12:00
_				-			_

Figure 45: Building's occupancy forecast status 2nd floor South-West area

The occupancy status is in red. The corresponding scale is on the left (1 stands for occupancy and 0 for inoccupancy). In this example the tool forecasts an inoccupancy period during the lunch time for the last day.

-	-		-	-			
00.06	12.00	00.00	12:00	00:00	12:00	00.00	12:00

Projection of the occupancy status for pre-heating and pre-cooling purposes

Figure 46: F Building's 2nd floor South-West area pre-heating occupancy period

The occupancy status is in red. The corresponding scale is on the left (1 stands for occupancy and 0 for inoccupancy). In this example the projection of the occupancy status for pre-heating is the same sequence as the forecast of the occupancy status as the running period of the tools in this example was not sufficiently cold or hot to trigger the precooling or preheating in this room.

An assessment has been performed to evaluate the KPIs, and the performance of the tools implemented within this LLUC via the test scenarios below. This assessment is not only evaluating directly the KPIs, but also uses test scenarios to verify that every step of the low-level use case is working properly. All the results are measured only for heating period since the tools updates started during the summer period.

Command sending test

Description	This test aims to verify that the optimization solutions are indeed applied to						
	building. Commands are sent to the controllers of the buildings, and it is verified that						

	they are indeed the actual setpoint of these controllers. No KPI is needed because
	this test does not need permanent monitoring.
Objectives	Check controllers actually get the command which is sent to them
KPIs involved	None
Results	100%
Notes	The controllers accept the new setpoint for each operational mode, but it is yet
	possible to choose the mode.

Comfort deviation test

Description	An analyse on the comfort is made to check if the comfort is assured everywhere and at any time in the building. The KPI 1 is a direct evaluation of the comfort regarding to the temperature setpoint.
Objectives	To check if the comfort is maintained in the building
KPIs involved	KPI-1 Comfort during occupancy time
Results	0.22°C
Notes	The heating period since the tools was updated is too short for a relevant evaluation.

Occupancy forecast accuracy test

Description	The use case aims to replace the occupation profile of the controllers with an								
	occupation forecast. This forecast needs to be accurate but even more accurate than								
	the initial pr	ofile. Th	e accuracy	of bot	h cas	es are then com	bared	d.	
Objectives	To check if t	he occup	pation fore	cast is	accui	rate			
KPIs involved	None								
Results	76% accuracy forecast								
Notes	The con	fusion	matrix	of	th	e forecast	is	the	following:
	Forecast								
						occupied	1	inoco	cupied
	Meas		occup	ied			52		4
	ivieas	sure	inoccu	upied	1		20		24
	The accurat	cy of the	e occupano	cy is 2	3% k	etter than the	actu	al occup	ancy profile
	accuracy								

Gain on heating/cooling consumption test

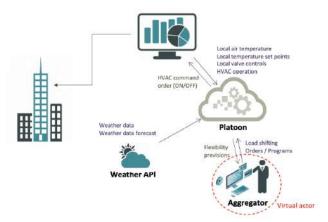
Description	The use case aims to reduce cooling or heating consumption thanks to an occupation						
	forecast. The energy consumption is measured then analyse to check if the						
	optimization gives a gain on the cooling or heating consumption. This analysis is made						
	by KPI 4 for heating and KPI 5 for cooling.						
Objectives	To check if there is gain on consumption.						
KPIs involved	KPI-4 Gain on heating consumption						
	KPI-5 Gain on cooling consumption						
Results	None yet						
Notes	The new heating program is not used by the building yet. There is then no gain to						
	measure. This test will be performed again early 2023.						

Unnecessary heating/cooling emission test

PLATOON

Description	The use case aims to optimize the HVAC cooling or heating emission thanks to an
	occupation forecast. Thanks to the KPIs 2 and 3, the unnecessary heating and cooling
	are measured with and without occupation forecast. The measures can be compared
	to evaluate the impact of the use case.
Objectives	To check if the optimized heating/cooling behaviour is consistent and if the LLUC
	make an improvement on the unnecessary emission.
KPIs involved	KPI-2 Unnecessary HVAC heating emission
	KPI-3 Unnecessary HVAC colling emission
Results	67%
Notes	The heating period since the tools was updated is too short for a relevant evaluation.

The table below summarizes Pilot 3A LLUC01 results.


Table 22: LLUC-3A-01- KPIs evaluation

KPI #	Description	Target Value	Actual Value	Comments
1			0.22°C	Validated. The heating period
	Deviation to target comfort	0.5°C to		since the tools was updated is
	during occupancy time	comfort range		too short for a relevant
				evaluation.
2	Unnecessary HVAC heating	<10%	67%	Validated. The heating period
	emission			since the tools was updated is
3	Unnecessary HVAC cooling	<10%	67%	too short for a relevant
	emission			evaluation.
4	Gain on heating consumption	>10%	-	Not validated. The new heating
5	Gain on cooling consumption	>10%	-	program is not used by the
				building yet. There is then no
				gain to measure. This test will
				be performed again early 2023.

5.3 LLUC-3A-02-Provide demand response services through building inertia and HVAC controls

The use case intends to provide a smart module to supervise the implementation of Demand Response services in an office building using HVAC control and building inertia. This use case aims to:

- Provide flexibility services to contribute to the grid balance (helping to reduce peak demand on the grid)
- Provide accurate predictions of the flexibility available for the next day to help the aggregators to evaluate the Demand Response services provided on the market
- Generate income by contracting with an aggregator

Figure 47: Pilot 3A LLUC02 schema

Challenges were encountered on two levels in the implementation of the LLUC 02:

- The operation of the cooling system feeding the cooling network of the building presented a lot of on/off cycle probably due to oversizing. In this condition it was quite difficult to precisely model the electricity consumption with the start and stops of the system.
- The data regarding heating consumption from the gas counter was updated every hour which limited the resolution of the output data of the model. In fact, it was only possible to predict the energy consumption every hour.

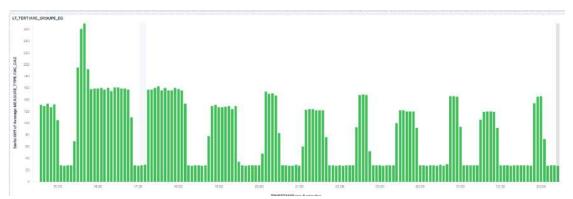


Figure 48: LLUC-3A-02- Energy consumption of the cooling system

As a consequence, the prediction on energy consumption was difficult to perform every 30min as initially planned due to the 2 issues mentioned above.

Furthermore, some of the tools developed for the energy consumption prediction are based as well on the tools of the first low level use case, especially the on the occupancy prediction. Updates on these tools were needed to run more accurately the predictions

5.3.1 Evaluation and Validation

An implementation has been conducted to collect and integrate the cooling and heating consumption data and the integration of the BMS in reading (from data collection) and writing (to send set point to the building) within the platform Pilot 3A were successfully performed. The implementation of the

pipelines and the AI services developed within this use case were completed. The parameters and set points to send to the Building Management System were produced and the optimized controls had been successfully sent to the 120 temperature controllers around the building.

As explained in deliverable D4.4 Analytical Toolbox, three services have been developed withing this LLUC to forecast the heating and cooling energy consumption, to assess the load shifting of heating and cooling energy consumption, and to forecast the heating and cooling energy consumption with load shifting potential.

Blow presented un example of the tools results

• Forecast of the HVAC load:

Figure 49: Pilot 3A HVAC Load

18.00

per 30 minuter

The forecasted loads for the main subsystems of the heating system, namely the gas and the ventilation. Energy consumption for gas is kWh and 10 Wh for electricity. Both gas heating system (boiler and heat pump) show less energy consumption during inoccupancy period (during non-working hours). In the heating ventilation system the occupancy status has no impact on the energy consumption, it is only related on the external temperature.

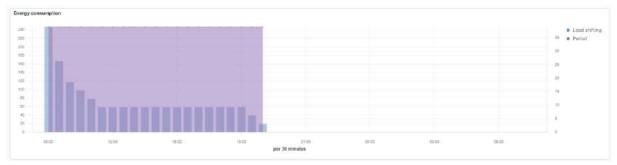


Figure 50: Pilot 3A Load shifting assessement

The load shifting assessment for the next hours shows that the duration of the load shifting, whatever the beginning of the load shifting is equal to the longest period permitted by the tool (38 half hours). In this example the running period of the tool (November 2022) is not sufficiently cold or hot to restart the cooling or heating during the next 38 half hours period. The volume of the load shifting is higher is the load shift begins in the first working hours when the energy consumption is highest of the day.

Figure 51: Heating and cooling load shifting forecast

Tool 3 and tool 5 give the same results as the running period of the tool (November 2022) is not sufficiently cold or hot to restart the cooling or heating during the next 38 half hours period.

An assessment has been performed to evaluate the KPIs, and the performance of the tools implanted within this LLUCO2 via the test scenarios below. This assessment is not only evaluating directly the KPIs, but also uses test scenarios to verify that every step of the low-level use case is working properly. All the results are measured only for heating period since the tools updates started during the summer periode.

Consumption prediction accuracy test

Description	The use case aims to make the building flexible. A prediction of the HVAC load is then
	necessary and must be as accurate as possible. The KPIs 1 and 2 are direct evaluation
	of the forecast accuracy of respectively the heating and cooling load.
Objectives	To check if the heating/cooling load forecast is accurate
KPIs involved	KPI-1 Mean error on heating load prediction
	KPI-2 Mean error on cooling load prediction
Results	>300% for heating
Notes	November 2022 had mild temperature so low heating was applied during the training
	period. Moreover, the heating setpoint in Engie buildings went to 21 to 19°C which
	trend to overestimate the heating forecast.

Load shifting test

Description	The use case aims to provide demand/response services such as load shifting. The load shifting forecast is essential to assure the demand/response services while
	maintaining comfort. The KPI 5 measures the load shifting length forecast accuracy.
Objectives	To check if the building is capable of providing load shifting and if the load shifting
	forecast is consistent.
KPIs involved	KPI-5 Error on the flexibility prediction
Results	None yet (see Notes)
Notes	The test needs an actual flexibility event to be conducted. Engie should get contracted
	with an aggregator in order to participate to flexibility services.

Consumption saved test

Description	The use case aims to provide demand/response services such as load shifting and so save a part of the consumption. The consumption during flexibility must me know for the load shifting to be valorised. The actual consumption is then compared to the forecast during a flexibility event. The KPI 6 measures the HVAC load forecast
	accuracy.
Objectives	To check if the consumption forecast during a flexibility event is accurate and consistent.
KPIs involved	KPI-6 Mean error on HVAC load prediction for days with load shifting programs
Results	None yet (see Notes)
Notes	The test needs an actual flexibility event to be conducted. Engie should get contracted with an aggregator in order to participate to flexibility services.

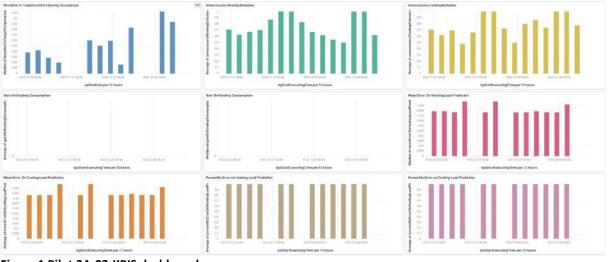

The table below summarizes Pilot 3A LLUC01 results.

Table 23: LLUC-3A-02- KPIs evaluation

KPI #	Description	Target Value	Actual Value	Comments
1	Mean error on heating load prediction	Error <10%	>300% for heating	November 2022 had mild temperature so low heating
2	Mean error on cooling load prediction	Error <10%	>300% for heating	was applied during the training period. Moreover, the heating setpoint in Engie buildings went to 21 to 19°C which trend to overestimate the heating forecast.
3	95-percentile error on heating load prediction	<20%	-	Not validated

4	95-percentile error on cooling load prediction	<20%	-	
5	Error on the flexibility prediction	Error <10%	-	The test needs an actual flexibility event to be
6	Mean error on HVAC load prediction for days with load shifting programs	Error <10%	-	conducted. Engie should get contracted with an aggregator in order to participate to flexibility services.

Blow presented pilot 3A LLUC01 and LLUC02 KPIs Dashboard.

Figure 1 Pilot 3A-02-KPIS dashboard

For now, the new temperature setpoint are not yet applied inside the building. The gain on heating or cooling cannot be measured then. Moreover, the unoccupied period used to calculate the unnecessary heating or cooling does not correspond to the one compute on the buildings controllers. The mean errors get a wrong data index in its calculation which make underestimate the error.

Finally, the deviation to the target temperature is quite low which shows that the building is fully capable to maintain the temperature setpoint even if the setpoint doesn't match with the real occupancy.

5.4 Conclusion

This section presented pilot 3A led by ENGIE tests and validation results for all of the functions and services developed and implemented within the lifetime of the PLATOON project.

The test scenarios associated to Pilot 3A office building operation and performance services validation were conducted onsite, with the support of the Future Building an cities LAB (part of ENGIE research), where the necessary assets and conditions were made available to allow performing, to the extent possible, the pre-defined test scenarios.

The objective set-up to the test phase was to evaluate the technologies developed within the PLATOON project, and to measure their impact on ENGIE's office building thanks to the performance of the occupancy prediction, HVAC load forecast, day ahead pre-heating and pre-cooling schedules as well as flexibility capabilities.

Some of the target KPIs were fully reached, even better than expected for some specific cases where the tests demonstrated better results than the profiles defined for the building. However, some of the tests performed was not enough to evaluate all their associated KPIs, this was due to :

- Inability to assess the energy services during the HVAC cooling operation mode since the tests started after summer,
- Inability to apply yet the new heating program impacting the measurement of the energy gain,
- Updates on the building temperature set points (from 21° to 19°) impacting the HVAC load forecast that trended to oversize the heating.
- Need to contract with an aggregator to be able to participate in real flexibly market as defined which was not able to be done during the lifetime of PLATOON.

All the results have been compiled, reported in pilot 3A section, and consolidated in a dashboard to be continuously monitored by the business. Also, the reasons why some KPIs have not been able to be reached were justified.

To follow-up the pilots evaluation, ENGIE will run new tests early 2023 when the heating system will be used more and another phase during the summer where the cooling system will be operating. Also, any updates on the pilot's KPIS will be presented during the finale review of the project.

6. Pilot 3B-PI Evaluation & Validation Report

6.1 Introduction

The scope of the Pilot is to create a new way to work in order not only to optimize energy usage and identify behaviours to be changed, but also as an opportunity to reduce maintenance and service interruptions through a better usage of cooling / heating and lighting systems and use algorithms for anomaly detection in HVAC plants. The type of data used in the pilot span from internal consumption data and plants performances to comfort targets managed by user together with external information related to weather forecasts and real time conditions.

The Pilot 3B-PI includes the following use cases:

- LLUC-3B-PI-01- Building Heating & Cooling consumption Analysis and Forecast
- LLUC-3B-PI-02 Anomaly Detection of cooling & heating plants
- LLUC-3B-PI-03 Lighting Consumption Estimation & Benchmarking

In order to validate the data analytics tools developed in WP4, the tools have been tested using real data from different kinds of buildings.

6.2 LLUC-3B-PI-01- Building Heating & Cooling consumption Analysis and Forecast

The use case focuses on efficiently forecasting and benchmarking of energy consumption to reduce costs and emissions and improve the comfort of the working environment. For optimization of both cooling and heating systems, it is important to correlate the energy consumption with the occupancy (based on number of employees and customers), as well as to benchmark with similar buildings.

6.2.1 Evaluation and Validation

Table 24: LLUC-3B-PI-01- KPIs evaluation	

KPI #	Description	Target Value	Actual Value	Comments
1	Deviation between actual and forecasted energy consumption	+/- 5%	[SB] 7%≥KPI ≤40% [MO] 10%≥KPI ≤20% [L102] 8 %	Calculated on real historical data and based on Prophet algorithm. The actual Value is calculated as follows: For every building is calculated the average MAPE (distance between forecast date and calculation date) on 30-day forecasts. The value of the KPI given here is Weekly (YYYY-WW) for each building averaged by cluster (102, Multi- hourly, SB) in order to give a general vision. The Fiumicino office's KPI (L102 Category) was well above the threshold, but it was excluded from the evaluation because the office had major technical problems that had a strong impact on the data
2	Energy consumption gap of a building with itself during the time (year)	+/-10%	From4% to +2%	calculated on real data. The business KPI meets the target value. The values of the index are important as it is useful for assessing building performance over the long term ¡Error! No se encuentra el origen de la referencia.

3	Energy consumption gap of a building with itself during the time (short period)	+/-10%	+/- 24 % (calculated on a building taken as sample)	Calculated on real data. The results doesn't match with the target value, but this is a business KPI. The positive index could be an indicator of something that is not working well in the building. Or can be impacted by unexpected events. The more negative is the value the more is good.
4	Benchmark of a building energy consumption with a cluster of similar buildings	+/-10%	7%	Calculated on real data. The business KPI is useful to compare the behaviour between similar buildings.
5	CO2 emission reduction	≥ 10%	Annual: From Jan 2022 to Sept 2022 [SB] >10% [MO] >10% [L102] >10% Monthly: -9,20%≥KPI ≤25,82%	Calculated on real data. The KPI is of business type and the value is calculated for each Building. The KPI is calculated on annual and monthly allocated budget for energy and real budget spent. The values represented by the KPI therefore indicate the trend of energy consumption during the year and the corresponding amount of CO2 reduction

In order to better understand the result of the measurement it's important to highlight the challenge encountered in the implementation of the use case:

- Data availability not as expected
- Buildings with similar characteristics but very different behaviour
- Clusters contain building constructed with different materials
- Standard setpoints for temperatures were changed locally
- Uneven heating and cooling management between buildings with sub-optimal regulation.
- COVID-19: during the covid period, many offices were closed and therefore energy consumption was substantially reduced (historical data)

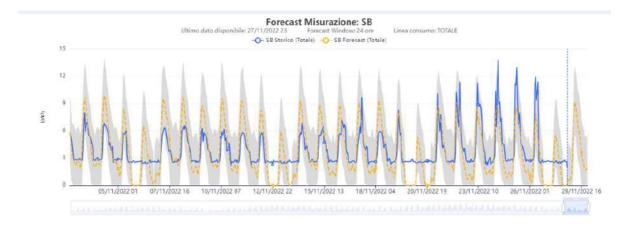
• Climate anomalies: during 2022, temperature trends significantly exceeded those of previous years and this resulted in higher HVAC usage.

KPI-01 calculates the deviation (%) between the energy consumption forecast and the actual consumption in the building.

The following table shows an extract of the percentage error (MAPE) calculated on the average of the analyzed period from the one-day to 30-day forecast.

	SB	SB	SB	SB	SB	SB	multioraria	multioraria	multioraria	multioraria	multioraria	102
	FRATTOCCHIE	ROMA 40	ROMA 114	ROMA 162	ROMA 107	ROMA 132	ROMA BELSITO	ROMA TRULLO	ROMA CINECITTA EST	ROMA NOMENTANO	ROMAEUR	DATA CENTER CONGRESSI
						MAPE A	/erage					
Forecasting												
Day√	RML09300	RML28900	RML75200	RML81200	RMP07900	RML89900	RMP01400	RMP01600	RMP02000	RMX 01800	RMX10000	RMLA0900
1	23,47%	24,33%	21,08%	32,24%	26,30%	6,95%	17,00%	22,15%	17,96%	17,51%	13,72%	4,05%
2	24,33%	24,79%	21,53%	32,38%	26,49%	7,07%	17,27%	22,42%	18,36%	17,69%	13,81%	4,22%
3	25,42%	25,24%	21,85%	32,60%	26,69%	7,14%	17,19%	22,23%	18,72%	17,75%	14,00%	4,38%
4	26,14%	25,66%	22,21%	32,82%	26,79%	7,17%	17,19%	22,02%	18,97%	17,83%	14,14%	4,53%
5	26,94%	26,26%	22,56%	32,94%	26,95%	7,24%	17,00%	22,39%	19,49%	18,00%	14,35%	4,68%
6	27,86%	26,68%	22,86%	32,95%	26,69%	7,31%	16,60%	22,73%	19,83%	18,16%	14,48%	4,82%
7	28,73%	26,79%	23,34%	33,06%	26,74%	7,37%	16,77%	22,84%	20,23%	18,58%	14,54%	4,95%
8	29,72%	28,42%	23,66%	33,76%	27,65%	7,48%	16,98%	22,48%	20,02%	18,30%	14,38%	5.07%
9	30,55%	28,96%	23,99%	33,65%	27,61%	7,57%	17,02%	22,65%	20,47%	18,38%	14,51%	5,17%
10	31,24%	28,77%	24,28%	33,54%	27,89%	7,59%	17,12%	22,63%	20,85%	18,49%	14,73%	5,27%
11	32,04%	29,43%	24,64%	33,99%	27,95%	7,63%	16,96%	22,29%	21,16%	18,58%	14,89%	5,38%
12	33,03%	30,04%	24,85%	34,06%	27,76%	7,71%	16,83%	21,97%	21,69%	18,72%	14,85%	5,49%
13	33,80%	30,35%	25,27%	34,19%	27,55%	7,76%	16,75%	22,26%	22,03%	18,92%	14,77%	5,61%
14	34,74%	30,64%	25,66%	34,39%	27,50%	7,76%	16,98%	22,07%	22,52%	19,09%	15.01%	5,74%
15	35,57%	32,53%	26,09%	35,09%	28,00%	7,79%	16,93%	21,28%	22,22%	18,43%	14,98%	5,87%
16	36,53%	33,12%	26,56%	35,29%	27,79%	7,80%	16,94%	21,26%	22,42%	18,45%	14,85%	6,01%
17	37,52%	33,20%	26,85%	35,11%	27,64%	7,79%	16,81%	21,26%	22,67%	18,40%	14,73%	6,15%
18	38,46%	33,51%	27,30%	35,00%	27,53%	7,79%	16,72%	21,30%	22,81%	18,37%	14,76%	6,31%
19	39,67%	34,36%	27,81%	35,23%	27,69%	7,80%	16,65%	21,16%	23,19%	18,56%	14,93%	6,46%
20	40,52%	34,77%	28,29%	35,44%	27,67%	7,79%	16,44%	21,30%	23,53%	18,61%	15,12%	6,62%
21	41,67%	34,96%	28,66%	35,66%	27,53%	7,79%	16,74%	21,07%	23,97%	18,96%	15,30%	6,77%
22	42,90%	36,77%	28,99%	36,56%	27,85%	7,72%	16,24%	19,88%	23,77%	18,63%	15,12%	6,94%
23	44,06%	37,20%	29,30%	36,79%	27,68%	7,70%	16,35%	20,14%	24,03%	18,46%	15,21%	7,12%
24	45,17%	37,25%	29,58%	36,51%	27,79%	7,63%	16,31%	20,38%	23,91%	18,31%	15,51%	7,30%
25	46,11%	37,56%	30,02%	36,73%	27,72%	7,57%	16,41%	20,86%	23,58%	18,12%	15,55%	7,50%
26	46,90%	38,32%	30,35%	36,95%	27,65%	7,64%	16,11%	21,15%	23,64%	17,96%	15,48%	7,71%
27	47,35%	39,07%	30,55%	37,07%	27,70%	7,68%	15,66%	21,76%	23,09%	18,35%	15,28%	7,92%
28	48,47%	39,26%	30,87%	36,68%	27,72%	7,61%	15,66%	21,74%	22,22%	18,03%	14,83%	8,13%
29	49,79%	41,41%	31,33%	37,62%	28,41%	7,48%	15,96%	21,00%	21,13%	17,15%	13,94%	8,35%
30	51,00%	42,43%	31,71%	37,79%	28,45%	7,47%	16,01%	20,97%	20,45%	17,44%	13,27%	8,61%
Average	36,66%	32,40%	26,40%	34,87%	27,51%	7,56%	16,65%	21,65%	21,63%	18,27%	14,70%	6,10%

Table 18: LLUC-3B-PI-01 KPI-01 MAPE on Energy Consumption forecasting


The result obtained by the KPI highlights that there is a significative difference in the average values calculated according to building category (Smart Building, Multioraria, DL102).

From the observation of forecasting results we resume that the main factors that can impact on the efficacy of the Prophet algorithm are the granularity of data, the history of the data available for each building category and the intended use.

Infact the "Multioraria" has two 3 years of historical data and the index has an acceptable value. Also, the "DL102" building has a good value index: the presence of historical data, stable environment and not daily human presence could have positively impacted on the results.

The situation of Smart Buildings is more complex. In this case, historical data are short-lived. In these offices, the standard configurations of HVAC systems are changed by the personnel working in the building (according to non-programmable needs.

The following charts show the actual consumption values in blue and the forecasted data in orange dashed line. The grey area indicates the magnitude of error predicted by the forecasting algorithm. Finally, the blue vertical line indicates the point at which the forecast starts.

Figure 24: LLUC-3B-PI-01 KPI-01 Energy Consumption forecasting on a selection of Smart Buildings 52

53jError! No se encuentra el origen de la referencia.

Figure 26 shows the comparison of a building's energy consumption compared to the previous year (KPI-02); the green lines indicate the limits of the target value. The business KPI validate the analytic tool because the results are consistent with the data analysed and both allows monitoring of energy consumption and provides useful information for decision support to those involved in defining efficiency strategies or managing buildings.

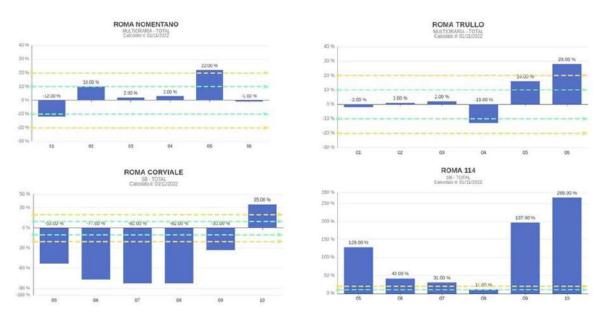


Figure 26: LLUC-3B_PI-01 KPI-02 Energy Consumption Gap of a building with itself during the time

The KPI 03 is based on the benchmark of a building compared to itself on a very short period. The analysis made in November 2022 shows that all buildings have increased their energy consumption in the last two weeks measured (see the two examples in Figure 27). The highest consumption coincides with the period when the heating systems are switched on.



Figure 2: LLUC-3B_PI-01 KPI-03 Energy Consumption Gap of a building with itself during the short period

The KPI-04 (this value is not technical but a business one) compare a building energy consumption with a cluster of similar buildings£

. Measurements show that buildings that have some similar characteristics (climate zone, size, intended use) behave differently. Structural elements of the building (e.g. building materials, glazed surfaces, etc.), exposure and other factors (e.g. human factor) can influence energy consumption, especially lighting and heating/cooling. The tool and the KPI provide valuable support to building and energy managers in making decision.

Figure 26: LLUC-3B_PI-01 KPI-04 Energy Consumption Gap of a building with other building in the same cluster

Finally, the KPI 05 represents the CO2 emission reduction in a year for each building. Also, this is a business KPI so that the target value depends on the action taken by the energy manager to match with the company strategies and objectives. Hence, the validation of the KPI is not based on the achievement of the KPI's target value but on its effectiveness in providing information for the business. Annually, each building is allocated a quota (budget) of monthly expendable Kwh.

The graphics below, taken a cluster of buildings as a sample, shows the energy consumption trend in the period from January 2022 to November 2022. The graph shows that in November, FRATTOCCHIE building consumed 95,85 % of the annual budget. This means that the building will not only exceed the savings targets, but will consume more than the planned budget. The scenario for the building of ARTENA it's very different. In November the consumed budget is 34,19%. So, if the growth trend continues, by December 2022 it is estimated that the CO2 reduction targets will be largely achieved and exceed the defined threshold.

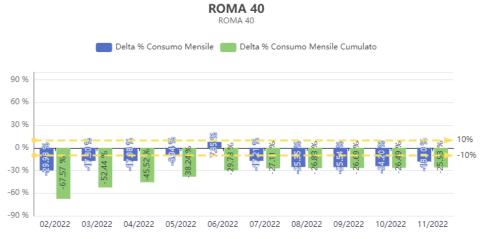



Figure 54: LLUC-3B-PI-01 KPI-05 CO2 Energy consumption trend o the annual budget In the following in the graphic, the CO2 reduction is calculated monthly on the basis of the difference between the allocated Kwh and the Kwh consumed in the period. The dotted yellow lines indicate the minimum thresholds. For example, on November 2022 in Roma 40 building, a CO2 reduction of 18,10% (134,58 Kg CO2) is calculated, while the cumulated CO2 reduction from January 2022 to November 2022 is 25,93% (2904 Kg CO2).

Figure 28: LLUC-3B-PI-01 KPI-05 CO2 reduction trend

6.3 LLUC02-3B-PI-02 Anomaly detection of cooling & heating plants

The objective of this use case is to optimise maintenance efforts through monitoring techniques that can track equipment performance during normal operation and identify anomalies before they result in actual failures.

Based on information collected through meters and sensors installed in the buildings (such as systems energy consumption, internal temperature, number of sensors, ...) the app detects possible anomalies in the sensor values, which might indicate a problem on the heating or cooling system.

6.3.1 Evaluation and Validation

KPI #	Description	Target Value	Actual Value	Comments
1	Recall – True positive anomalies identification	90%	100%	The anomalies detected by the system are compared to the actual number of anomalies (true positive) occurred.
2	Precision -	90%	100%	The anomalies correctly detected by the system are compared to the total of problematic cases (true and false positive) occurred.
3	F1-Score	90%	100%	The KPI is used in cases where the best combination of precision and recall is desired. F1 score could be used to combine the two criteria. The F1 score is the harmonic mean of precision and recall.
4	Performances Analysis	5%	The calculated index found unexpected values . The target value needs to be reassessed.	The system deterioration index indicates the energy required by the HVAC to maintain the temperature of a building to the optimal conditions per unit of volume and temperature. It is a Business KPI.

Table 25: LLUC-3B-PI-02- KPIs evaluation

During the period of the project the app detected multiple violations of the specified thresholds especially on the temperature sensor measurement on multiple buildings. The analysis has interested a significative set of information.

To validate the Anomaly Detection Tool and KPIs, reports of anomalies, faults and open tickets on Poste's internal systems during the same period of analysis were acquired and analysed. The comparison of the data confirmed the validity of the model.

The following chart shows the detected temperature violation (>27°) for each sensor installed in the building of TRIGORIA.

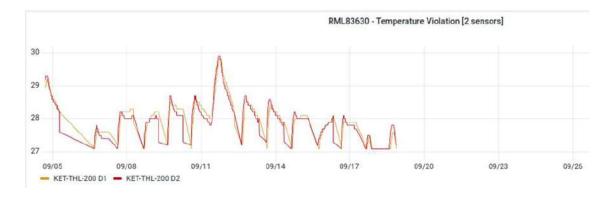


Figure 28: LLUC-3B-PI-02 KPI-01 Temperature Violation in the building of TRIGORIA

The graph below shows energy consumption violations (consumption peaks) compared to outside temperatures; it serves to highlight or justify any increase in consumption due or not due to outside weather conditions. The moments of highest energy consumption (red dots) are concentrated at the time of start-up following the opening of offices.

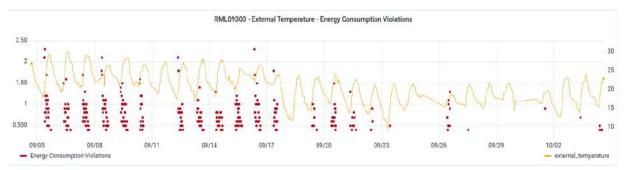


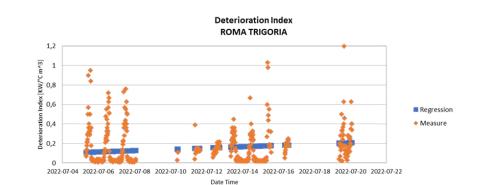
Figure 28: LLUC-3B-PI-02 KPI-01 Anomalous energy consumption peaks in FRATTOCCHIE Building

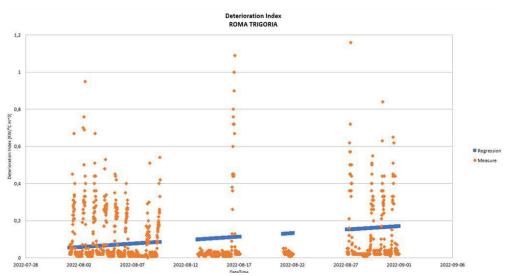
To calculate the violations, three different methodologies have been applied: rule-based detection, Spikes-based detection (MCOD- Micro-cluster Continuous Outlier Detection) and Trend-based detection which users a Linear Regression approach.

A sample of anomaly result based on Rule-based detection is reported in the following table were the tool reports the events occurred in the building of TRIGORIA, when the temperature is lower (<17°C) or higher (>27°C) than the defined threshold.

: :	RML83630 - Incidents -	Rule Based - Temperatu	ure.	÷	
detection_type	incident_time	report_time	value	notes	sensor 1
DETECTIONRE_EVENT	2022-09-10 21:40:49	2022-10-04 10:56:21	28.50	>27	KET-THL
DETECTIONRB_EVENT	2022-09-10 22:10:49	2022-10-04 10:56:21	28.40	>27	KET-THL
DETECTIONRB_EVENT	2022-09-10 22:25:49	2022-10-04 10:56:21	28.40	>27	KET-THL
DETECTIONRB_EVENT	2022-09-10 22:40:49	2022-10-04 10:56:21	28.40	>27	KET-THL
DETECTIONRB_EVENT	2022-09-10 22:55:49	2022-10-04 10:56:21	28.40	>27	KET-THL
DETECTIONRB_EVENT	2022-09-10-23:10:49	2022-10-04 10:56:21	28.40	>-27	KET-THL
DETECTIONRB_EVENT	2022-09-10 23:25:49	2022-10-04 10:56:21	28.40	>27	KET-THL
			1.2		

Contract No. GA 872592


Table 26: LLUC-3B-PI-02 KPI-02: -Roma TRIGORIA, Temperature violantions in September


The table below shows the anomalies identified in the TRIGORIA Office, using the three methods above described.

RML83630																	
		RML83630 - In	cidents - Deterioratio	n Index							RML8363	0 - Incide	nts <mark>- Rule Base</mark>	d - Energ	,		
detection_ty	pe	incident_time	report_tim	e	value	notes	s se	buildi	ng_id	detect	ion_type	inciden	t_time	report	time	value	notes
DETERIORAT	ION_RA_	2022-07-13 12:4	5:00 2022-10-0-	4 09:27:53	0.31	2 ser	isor(RML8	3630	DETEC	TIONRB_EVENT	2022-0	7-13 08:28:14	2022-1	0-04 09:27:28	5.00	>0.4
DETERIORAT	ION_RA	2022-07-13 13:0	0:00 2022-10-04	09:27:53	0.36	2 ser	isor(_	RML8	3630	DETE	TIONRB_EVENT	2022-0	7-13 08:43:14	2022-1	0-04 09:27:28	4.90	>0.4
DETERIORAT	ION_RA	2022-07-13 13:1	5:00 2022-10-04	09:27:53	0.33	2 ser	sor(RML8	3630	DETE	TIONRB_EVENT	2022-0	7-13 08:58:14	2022-1	0-04 09:27:28	3.80	>0.4
DETERIORAT	ION_RA_	2022-07-13 13:3	0:00 2022-10-04	4 09:27:53	0.33	2 ser	usor(RML8	3630	DETE	TIONRB_EVENT	2022-0	7-13 09:13:14	2022-1	0-04 09:27:28	3.30	>0.4
DETERIORAT	ION_RA_	2022-07-13 13:4	5:00 2022-10-04	09:27:53	0.28	2 ser		RML8	3630	DETE	TIONRB_EVENT	2022-0	7-13 09:28:14	2022-1	0-04 09:27:28	3.30	>0.4
DETERIORAT	ION_RA_	2022-07-13 14:0	0:00 2022-10-04	09:27:53	0.21	2 ser	sor(RML8	3630	DETE	TIONRB_EVENT	2022-0	7-13 09:43:14	2022-1	0-04 09:27:28	2.70	>0.4
DETERIORAT	ION_RA	2022-07-13 14:1	5:00 2022-10-0	09:27:53	0.28	2 ser)noai	RML8	3630	DETE	TIONRB_EVENT	2022-0	7-13 09:58:14	2022-1	0-04 09:27:28	3.20	>0.4
		RML83630 - Incid	ents - Rule Based - Te	mperatur							RML83630	- Inciden	ts - Rule Based	- Humidi	ty		
detection_type incident_time		report_time		value	notes	sensor +	id	buildi	ng_id	detection_type		incident_time				va	
DETECTIONRE	EVENT	2022-09-10 21:40	2022-10-04 10	56:21	28.50	>27	KET-THL-	678_	RML8	3630	DETECTIONRB	B_EVENT 2022-09-29		022-09-29 11:40:50 2022-10-04 1		-10-04 11:24:52	
DETECTIONRE	EVENT	2022-09-10 22:10	:49 2022-10-04 10):56:21	28.40	>27	KET-THL-	678_	RML8	3630	DETECTIONRB	EVENT	2022-09-29 1	1:55:50	50 2022-10-04 11:24		7
DETECTIONRE	EVENT	2022-09-10 22:23	2022-10-04 10	56:21	28.40	>27	KET-THL-	678_	RML8	3630	DETECTIONRB	EVENT	2022-09-29 1	2:10:50	2022-10-04 1	1:24:52	7
DETECTIONRE	EVENT	2022-09-10 22:40	2022-10-04 1):56:21	28.40	>27	KET-THL-	678	RML8	3630	DETECTIONRB	_EVENT	2022-09-29 1	2:25:50	2022-10-04 1	11:24:52	
DETECTIONRE	EVENT	2022-09-10 22:55	2022-10-04 10	:56:21	28.40	>27	KET-THL-	678_	RML8	3630	DETECTIONRB	EVENT	2022-09-29 1	2:40:50	2022-10-04 1	1:24:52	7
DETECTIONRE	EVENT	2022-09-10 23:10	2022-10-04 10	56:21	28.40	0 >27 KET-THL-		678_	RML8	3630	DETECTIONRB	_EVENT	2022-09-29 1	9 13:10:50 2022-10-04 1		1:24:52	73
DETECTIONRE	EVENT	2022-09-10 23:25:49 2022-10-04		:56:21	28.40	>27	KET-THL-	678 RML83630 DETECTIONRB		EVENT	2022-09-29 1	3:25:50	2022-10-04 1	1:24:52	71		
						RML83	8630 - Incid	lents - N	ICOD								
id	building	jd di	tection_type	incider	it_time		report_ti	me			value	notes		sensor	÷	meas	urem
58859	RML836	30 D	ETECTIONMCOD	2022-0	8-03 08:	15:00	2022-10-	04 09:5	9:23		45.00	R: 9, K 3	00	EM210	DZ D1,KET-T	30333	IRela
58860	RML836	30 D	ETECTIONMCOD	2022-0	8-03 08:	00:00	2022-10-	04 09:5	9:23		45.00	R: 9, K 3	00	EM210	DZ D1,KET-T	85565	SRela
58861	RML836	30 D	ETECTIONMCOD	2022-0	8-03 13:	45:00	2022-10-	-04 09:59:23 44.00				EM210	DZ D1,KET-T	88888	SRela		
58862	RML836	30 D	ETECTIONMCOD	2022-0	8-03 13:	30:00	2022-10-			44.00	R: 9, K 3	00	EM210	DZ D1,KET-T	00000	CRela	
58863	RML836	30 D	ETECTIONMCOD	2022-0	8-03 12:	45:00	2022-10-	04 09:5	9:23		45.00	R: 9, K 3	00	EM210	DZ D1,KET-T	00000	SRela
58864	RML836		ETECTIONMCOD		8-03 12:												CRela
58865	RML836			2022-0					04 09:59:23		45.00 R:		R: 9, K 300		EM21CDZ D1,KET-T		CRelat

The following chart show a sample of the results of the "Performance Analysis" (KPI-04) executed on ROMA TRIGORIA Building during the months of July and August 2022.

Figure 55: LLUC-3B_PI-03 Violation Detected in RML61900 Building

Figure 56: LLUC-3B_PI-02 – KPI-04 Degradation of HVAC Systems

Figure 28 shows a linear regression (blue line) of the performances during each month. In July, the daily average deterioration coefficient of the system was calculated at 0.0067 Khw, while in the following month the value was 0.0037 Kwh. By monitoring these coefficients, the efficiency of the system can be kept under control. The target value currently defined need to be refined to be considered realistic.

57

58

6.4 LLUC03-3B-PI-03 Lighting Consumption Estimation & Benchmarking

The objective of this use case is to estimate the specific building lighting consumption, in order to benchmark, detect anomalies and plan optimization actions to reduce lighting consumption of the building and the corresponding Green House Gases (GHG) emissions.

6.4.1 Evaluation and Validation

Table 27: LLUC-3B-PI-03- KPIs evaluation

	KPI #	Description		Target Value	Actual Value	Comments	
-							
	PLATOON		Con	tract No. GA 87	2592		Page 95 of 227

1	Lighting Estimation	+/-5%	3%≥ KPI < 16	The KPI calculates the % of
				deviation between the actual
				and the estimated lighting
				consumption.

The information on building lighting consumption is almost never available. The knowledge of the total energy consumption of a building and that of some systems in it is not sufficient to have an estimate of lighting consumption. The app calculates this value starting from information on consumption but analyzing also other information and produces the value required. To test the validity of the algorithm, an analysis on buildings with the lighting consumption information (classified as Smart Buildings) was performed and instructed the algorithm to make an estimate. The estimate is compared with the actual data. As shown in Figure 59 the KPI has a value of 15% with a deviation of +2% from the threshold value.

Figure 59: LLUC-3B_PI-03- Lighting Estimation

The benchmarking service provided near real-time information to the energy manager giving immediate and objective feedback on the effectiveness of the chosen solution that led to a significant reduction in consumption.

6.5 Conclusion

Compared to the use cases identified for the 3B-PI pilot, the tools developed, although simple, provide a valid support for end users in the energy domain (building and energy managers) to monitor, in some

cases almost in real time, consumption trends and the behavior of HVAC and lighting systems as external or internal conditions change, even unexpectedly.

The analysis method developed for the forecasting of energy consumption (LLUC01) and lighting consumption (LLUC03) showed that in the presence of scarce historical data, the margin of error become significantly high. The remaining KPIs calculated for the LLUC01 measure business performance and thus provide useful elements for performance monitoring and decision support. A margin for improvement can be considered for the Benchmark service in calculating KPI-04 by introducing others elements of comparison into the analysis. During the pilot, possible further data useful for improving KPI-04 were not available, but from the analyses made, such data were identified. The Anomaly Detection Tool (LLUC02) has been integrated into the Digital Enabler platform and, even if tests have been performed in a short time, has demonstrate a reliability in the results.

In general, since the algorithms are based on trend analysis of historical data, we believe that the influence of the COVID-19 event (consumption was drastically reduced due to office closures) and the subsequent weather situation, which, with the abnormally hot weather, led to higher consumption of air-conditioning systems, altering the consumption scenarios of previous years, should be taken into account when evaluating the results of the analysis.

7. Pilot 3B-ROM Evaluation & Validation Report

7.1 Introduction

This pilot is formed by 1200 buildings owned by the municipality of Rome and focuses on the Monitoring and Analysis System of Data coming from energy meters (power and gas) of these buildings large asset. The main scope is to integrate several datasets into a unique advanced energy management system with a spatial approach, in order to fasten the internal processes and workflow of the SIMU Dept. of Rome Municipality offices, so facilitating the detection of **anomalies**, the **periodical Reporting**, both for historic and forecasted data, and the **RES potentialities assessment**.

The Pilot is divided into four low-level use cases:

- LLUC-3B-ROM-01 Spatial reporting,
- LLUC-3B-ROM-02 Benchmarking,
- LLUC-3B-ROM-03 Forecasting
- LLUC-3B-ROM-04 RES potentiality (PV plants)

Each of the low-level use cases corresponds with a Service implemented through a dedicated Dashboard of the web Toolbox and a series of correlated datasets, collected periodically.

The type of data used in the pilot span from energy consumption data for power (6500) and gas (2500) meters, heat flux counters (2500), buildings structural data, PV plants (160) energy production and self-consumptions potentialities from RES, together with external information related to weather forecasts and real time conditions.

The use of data curation and treatments tools, offered by the DE pre-analysis component, will consent to design connectors from data sources, reducing costs and time when these sources change depending on new energy supply contracts.

One of the <u>main lessons learnt</u>, implementing and assessing the Pilot, is represented by **the critical impact of the variability and heterogeneity of the datasets provided by Energy Services Supplier** for a typical large asset of buildings. Policies for tenders can change and these services could be aggregated (unique buildings lot or few lots) or disaggregated (many contractors for buildings lots), based on short term (1 or 2 years) or on mid-term (5 – 7 years) contracts and the tenders could be extended to all or some energy vectors and appliances. To face this critical issue, designing and maintaining an advanced EMS three main strategies can be adopted:

- 1. Enabling a data collection and pre-treatment fast procedure to ensure the data curation within a pre-treatment environment (section of DE adopted in the pilot) able to standardize and integrate datasets, each time new sources are activated, to feed the analytical toolbox. In this approach the pre-analysis phase takes time and the improvement of semantic data could play a crucial role, although dealing with fragmented data sources results in major effort in the initial phase to minimize meta-data and relation errors. Training this part of the toolbox architecture with many different data sources will produce a progressive reduction of the time needed to process the new items.
- 2. Fast implementation of data connectors for each of the different data sources, considering that often the Energy Vendors will not consent to run code or programs on their servers to push data, so passive connectors should work on browsers pulling data from the suppliers portal services or on periodical mailing with automatic forwarding to the DB repository. This approach consents to build a semi-automatic data flow, supporting and accelerating the data collection (1), but connectors will likely become obsolete within few years. The activity of the 2nd Open Call winner (APIO, see WP7) for the pilot 3b-ROM focused on this solution: a connector has been established for the Heat flux Sensors Data on the Energy Service Supplier CPL-EFM server and an automatic mail forwarding to the Pilot repository has been set for the new Power Energy Supplier HERA.
- 3. Independent IOT solutions: Design and implementation of direct nRT Data flows from the meters working independently from the energy suppliers and vendors. This approach foresees a relevant initial investment when dealing with thousands of meters (6500 power + 2500 gas in the pilot 3b-ROM) but the test made on 15 power meters in the last phase of the WP6 and WP7 demonstrated that with the new generation of smart meters the cost for the needed extra IOT devices drastically decreased. Once such a system will be implemented and maintained the data analytics Toolbox will receive a stable energy data flow, and the data coming from external suppliers can be used for periodical confrontations.

The pilot offered the opportunity to test and verify the three strategies above described, facing not only the technical issues but also the governance and decision procedures. The relations with the suppliers (ENEL, HERA), the DSO (ARETI, ITALGAS), the Concessionaries (CPL and its contractor for data management, EFM) and above all with the decision makers within the involved departments in the Municipality of Rome, significantly slowed down the work phases. The third strategy making more independent, robust and stable the overall application could be considered the ideal solution for enhancing any advanced EMS serving a large asset owner or manager, that's why in the very last phase of the Pilot, with the support of the 2nd Open Call winner APIO two connectors have been tested for the big-data source of the Heat Flows Sensors (2500 already installed and monitored by CPL-EFM) and for 15 selected and representative power meters. In this second test dedicated IOT devices were installed and Chain2 data transfer was activated from last generation meters. The evaluation of this sub-pilot is presented within the WP7 DLVs.

7.2 LLUC-3B-ROM Monitor and analysis of data coming from energy meters of ROME Municipality buildings asset

The four services compose an integrated monitoring and analytical system for data coming from the meters (power and gas) of the non residential buildings asset of the Rome Municipality and aim to increase the awareness on the energy consumption profiles, anomalies, forecasting, PV plants potentialities on roofs and more in general on the efficiency measures potentialities.

The toolbox includes a rapid energy audit tool determining the Energy Performance of buildings, that can be applied to the whole asset, and two innovative forecasting algorithms (Prophet by ENG and DeepAR by BUILTRIX, 1ST Open Call winner) are implemented offering the opportunity to compare the results.

The pilot can also increase the capacity of the Energy Management office to produce more frequent and accurate Energy Audits including a standard Energy Performance (EP) analysis for each building. At present, the Energy Audits for some sets of buildings where produced with a traditional approach, within tenders delivering just PDF documentations and not-mainstreamed information that typically result soon out-dated. The four Platoon services all together contribute to speeding up the energy audits, turned into a continuous process, where, with no further costs for the Department, baselines and forecasts can be updated and the PV implementation potentialities for each roof can be integrated with current self-consumptions and RES exporting capabilities (Energy Community scheme). The added value consists in the advanced digitalization and semi-automation of the energy analysis, with a strong spatial approach, in the direction of continuous data management, even from heterogeneous sources, to build and exploit an integrated DB for the EMS of the municipality large asset.

Furthermore, the integrated organization of the datasets coming from different sources, previously fragmented in terms of management and assessment, within the DE architecture accessible via a unique Toolbox represents a relevant added value for the SIMU Department (Plant UO) and for the ROME City Data Platform (CDP, today a work in progress holistic platform) which aims to make a multiplicity of data accessible and transparent for citizens and stakeholders. Pilot-3b-ROM will provide to the CDP the pre-processed big data for energy dedicated to the municipal non-residential asset.

The evaluation of the pilot can be run at different levels: (A) energy planning and policy level; (B) information and data quality level and (C) energy efficiency technical level. Most of the KPI presented are focusing on the (C) energy efficiency technical evaluation, although some concerns the (A) energy management level.

It is important to notice that the Dashboards corresponding to the 4 services are used by officers with specific competences and tasks to achieve, that will be logged and will find in the *Notification Area* of the toolbox the functionalities to report and comment their work sessions, to propose the efficiency or maintenance measures to be implemented and to receive automatic notifications based on pre-set

criteria (i.e. setting a rule set for anomalies detection for a subset of buildings). In order to analyse and assess these notifications, consisting in an adequate volume of sessions, it will be necessary to wait 6-9 months after the end-users begin to use the platform on a regular base.

The PV potentialities service includes several tools, mainly developed by BUILTRIX, to assess the PV plants energy production, current and potential considering the extension of the plants that can be hosted on the free surfaces of the same roofs. Based on the spatial analysis of the roof and the physical installations, it presents PV maximum Peak Power and energy yearly production installable, its costs, incentives, ROI, self-consumption and energy savings results, offering an overview for each building of the RES optimal exploitation in view of the adoption of the new scheme related to the Renewable Energy Communities – REC – promoted by the RED2 EU Directive.

The use of the PV potentialities service allows officers to produce efficiency scenarios that enrich energy audits by promoting the expansion of the municipality's photovoltaic park, maximizing self-consumption and the production of excess energy that can be shared with other users under the new local RECs, moreover in line with the institution's recent strategies (SECAP of Rome 2020-2030).

7.2.1 Evaluation and Validation

KPI #	Description	Target Value	Actual Value	Comments
01	Total Energy Savings	1 % =relevant;	the Total Energy	The analysis of the meters data
	TES	2 % =good;	Savings [%]	(historical and current) produces
		3 % =very good;	calculated and limited	a series of measures that should
	KPI01a : [kWh / y]	Over 3%	to interventions	reduce the yearly total energy
		=excellent	resulting from the	consumptions, such as direct
	(Derived		toolbox use (test phase:	efficiency interventions,
	TECS		4/21 – 4/22)	dismission of un-useful meters,
	KPI01b: [€/y])	Baseline 2021:	is 1.1%	maintenance and rehabilitation
		Total	between 1% and 2%	plans on buildings following
	[% : kWh-saved /	consumption=	(Good).	consumptions anomalies
	Tot. kWh-Yc]	87.000.000 kWh		detection.
			This result comes	
	[Yc current year =	Total yearly cost =	mainly from	A derived KPI-01b is the Energy
	past 12 months]	30.450.000 Euro	measurable EVENTS:	Cost Saved (€/y) that depends on
			Anomalies in energy	energy tariffs but could be also
			invoices detected and	impacted by contractual (or
			corrected using Platoon	invoices) re-definition resulting
	This KPI can be		benchmarking service	from the use of Platoon data
	analyzed		(extra costs: 180k€,	analytics toolbox.
	distinguishing:		equivalent to 514.000	
			kWh);	A list of the EVENTS
	KPI-01-power		Four large buildings	(actions/interventions) impacting
			with very low	on TES, will be provided

Table 28: LLUC-3B-ROM- KPIs evaluation

	KPI-01-gas		with the toolbox have been included among the efficiency measures in next year's planning (saving for around 443.000 kWh and 155k€); Total Saving: 957.000 kWh for 335k€	
02a	Personnel costs (Euro/y) Or % (use % if total cost of the personnel on	relevant Up to 30 k€= good Up to 60 k€ = very good Over 100 k€ = excellent [Personnel Hourly cost X Total hours of work avoided in the year]	should base on specific reports on employees by the SIMU offices, but in this phase the KPI can be estimated through users interviews: the recent user tests results estimate the saving in personnel cost is Relevant (around 8	automatization of some functionalities offered by the 4 services will decrease the amount of worked hours dedicated to the same tasks, freeing up time for other activites. The installation of a nRT monitoring systems (tested in WP7 recently) is going to further reduce the costs for the personnel, mainly impacting on the activity of control of the
02b	Saving Costs Energy Related Costs other than 2a (Euro/y)	Euro/y Could be included in KPIO2a targets; Other Cost Savings resulting from the use the 4 services	EVENTS (5/21 – 5/22) we find the Dismission of 20 meters with zero consumptions, generating a saving calculated summing the fixed fees avoided	meters that have to be dismissed as a result of the toolbox services application. Note: this is NOT the Cost for
03	Nb of Meters with Energy Savings Results (Nb of Meters)	Up to 10 =relevant; 11-30 =good; 31-60 =very good;	Counting the Nb of meters impacted by Platoon toolbox, during the users test phase, gives the result for this KPI (Good: 23 Meters	number of energy meters for which PLATOON data analytics tools produce some action resulting in energy saving during

		To be calculated on the basis of KPI- 01 and KPI-02b analysis.		Derived KPI: KPI01/KPI03 represents the average energy saved [kWh] per meters involved, and measures the average intensity of the single EE interventions
04	detected	10 =relevant; 11-20 =good; 21-30 =very good; Over 30 =excellent		tools produce Energy Savings therefore it is interesting to track separately the Number of Anomalies occurred during a period of observation. The definition of Anomaly for a specific energy meter is based on the occurrence of the consumption divergence
05	CO2 emission reduction	Same criteria for KPI-01 Target	Result = Good	See Indicator n.01 comments. Apply the specific Conversion Factor (in this case, 258,63 g CO2/kWh for Rome and Power Energy)
06		=relevant; Up to 400.000 =good; Up to 800.000 =very good; over 1.200.000 =excellent Rom_04_Kpi_R06	for 4.800.000 kWh/y based on RES suggested self-consumptions	The calculation of the RES potentiality is based on the energy from new PV plants that can be installed on municipal roofs, is based on the load curves, on the availability of irradiated surfaces to install RES plants, their tilt/orientation, BOD (using PV-GIS JRC model). It includes the self-consumption
	be installed on the roof when planning a plant within the REC	ROM_04_Kpi_01	production, within the REC scheme promoted by the Municipality	• •

	(Energy	the potential		that can be foreseen (toolbox
		-	Calculated through the	settings).
	,	01	toolbox on the new	settings).
	scheme, where also	•		Distance subsut is target of
	-		potential PV plants that	Platoon output in terms of
	energy is shared with			Total Potential RES [kWh/Y]
		production	municipal roofs.	calculation represents the
	meters.			positive impact of planned
				installations.
07	Nb of Tools Outputs	Over 100	Result= Good	Platoon results in terms of
		=relevant;		Queries with Output
	(Number of		For 242 tools outputs	processed by the offered
	occurrences from	over 200 =good;		(tested) tools represents a
	Toolbox log)			positive impact to be
		over 400 =very		measured. Measuring the
		good;	Calculated counting the	usage, this KPI is referring
			outputs coming from	about the effective
		over 600	the Platoon Toolbox for	engagement of the ROM
			Pilot-3b-ROM during	personnel.
			the user test phase (12	Counting outputs for each
			months).	distinct services and tools will
			montinsj.	help to address further
				development and exploitation
				strategies.
00	Vata assisted by the	Tavaatu b C	Cuptial Departing – C.O.	-
08	Vote assigned by the	Target: >6	Spatial Reporting = 6.8	Calculated at the end of the final
	Test Users	D [0 10]		User Test phase, where 10
			Benchmarking = 6.7	Officers assigned a vote for each
	7 assessment			services a for each of the 7
	criteria are:		Forecasting = 5.7	assessment criteria
	Layout, Intuitive			
	use or usability,		PV Potentialities = 6.2	They also answered a
	Usefulness, Use			questionnaire pointing some
	Frequency		See Figure below for	priority improvements that
	estimated,		more details.	could turn the services more
	Workflow			suitable with their work and
	improvement,			expectations. In particular for
	Impact on			Forecasting (S3) a rating under
	optimization of			the sufficient target depends on
	their task, Impact			the scarce usability and
	on Energy			consequent low impact on
	Efficiency			workflow (need for more clear
				Forecasting Reports).
				5 1 /

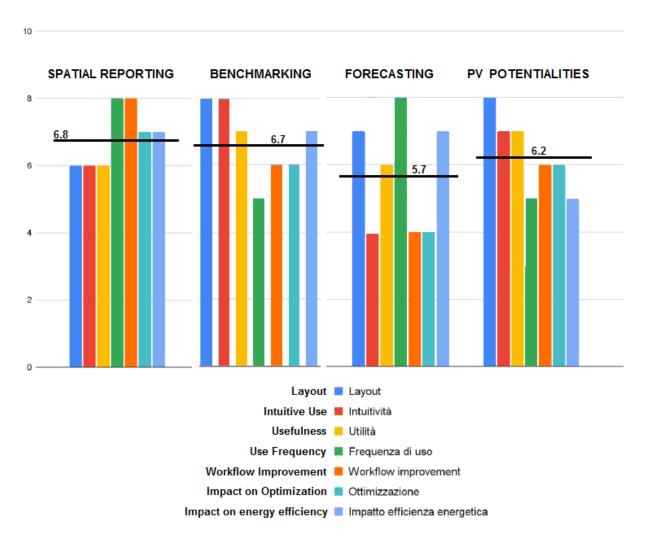


Figure 60: Results of the User Test for each Service of the Pilot-3b-ROM toolbox

• LLUC-3B-ROM-01 – Spatial reporting

This use case focuses on buildings and complex of buildings placed on the Rome Municipality map (15 Districts called *Municipi*) and consents the selection through text search or spatial query or structured menus in order to aggregate energy data coming from buildings, both for power and gas consumptions. Here it is also possible to show structural and dimensional data describing the buildings and their main uses.

The integrated monitoring and analytical system for data coming from the meters of different buildings of the Rome Municipality and from specific areas (Districts or smaller) is going to increase the awareness on the energy consumption helping the ROM officers to identify efficiency measures and priorities assessing consumptions profiles and spatial distribution.

The KPI_01 and the KPI_02 were calculated after a period of test use of the toolbox, when each concrete action contributing to the Energy Savings has been traced by the officers. For example, dismissing n.20 power meters on the basis of the toolbox analysis impact mainly on Money Saving (KPI_01, Euro/y) and on reduced Personnel cost (KPI_02, \notin /y); Alert on excessive consumptions on 4 large buildings coming from benchmarking and forecasting tools helped orienting next planned energy efficiency interventions, resulting in Energy Saving; Anomaly

detection in benchmarking could also highlight a serious error in invoicing compared to expected consumptions, resulting in a fast opposition versus the vendor and consequent repayment (Energy Costs Saving).

More in general a list of actions and planned interventions, resulting from the pilot Toolbox use, delivered at the end of a period of use of the tools consents to calculate KPI_01 (and some derived KPIs), KPI_03, KPI_05, KPI_07.

Figure 36: Pilot 3b-ROM-01 – Spatial Reporting dashboard: 1200 buildings with power and/or gas meters supplying data to the toolbox. The queries and spatial selections offered consent to obtain partial aggregated reports per Districts or per typologies of buildings.

	(D)mephon		Anzion	
Spatial Report	95			
ienerale		-O- PDR Total Consumptions		
Pettaglio	12,000,000		35,000,000	
Benchmark	- 10,000,000		30,000,000	
ndamento Temporale	8,000,000		25,000,000	POD Total Consumptions 2016 : 28030626.236
attaglio	6,000,000		15,000,000	
orecast	~ 4,000,000	1	10,000,000	V \
goritmo 1	2,000,000		5,000,000	<u>*</u>
goritmo 2	0 <u> </u>	2018 2019 2020 202	0	16 2017 2018 2019 2020 2021 2022
Analisi PV			7. 57	ar and and and and and and and

Figure 36 : Pilot 3b-ROM-01 – Spatial Reporting dashboard: overall energy consumptions from Gas Meters annual data and Power Meters annual data, for the whole analyzed asset. The same can be done for clusters of buildings based on several selection criteria.

The KPI_02 (Personnel cost saving) and KPI_08 (Votes by test users) have been presented specifically for this service. The automated reporting functionalities seems to be at present among the most appreciated outputs reducing significantly the time users have to dedicate to this task, although it was not possible to calculate precisely the Personnel Cost Saving without the specific hourly costs of the designed officers.



Figure 37 : Pilot 3b-ROM-02 – Benchmarking dashboard: overall energy consumptions, costs, CO2 for both Gas and Power meters and clustering of buildings by type of construction

• LLUC-3B-ROM-02 - Benchmarking

Within the benchmarking service is included the High-Level Anomaly Detection functionalities but these need to be further tested and used by the ROM officers in order to implement the specific rule-sets and thresholds that will define the anomalies conditions.

Basically the automatic benchmarking analysis presents buildings that exceed their reference cluster parameters. The main assessment can be done in terms of performance (KWh/sqm) through a graphic interface that highlights buildings that exceed the average value, orienting and supporting the user in the search for technical causes and in the definition of response measures.

POD (electricity) and PDR (gas) benchmarking can be aggregated for each building or complex of building.

At the end of the Users test phase (M35) the KPI_04, the KPI_07 and the KPI_08 can give a picture of the usability and effectiveness of this service. A margin for improvement for the calculation of these KPIs is possible by introducing new elements of comparison into the analysis, aiming to automatically detect other kind and conditions of consumptions anomalies through specific rule-sets.

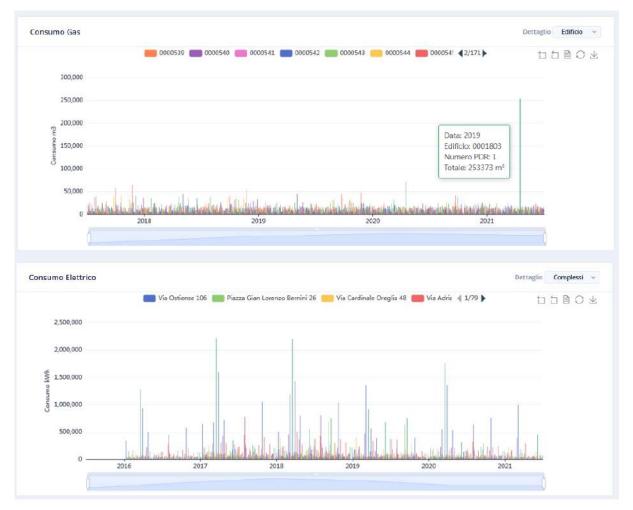


Figure 38 : Pilot 3b-ROM-02 – Benchmarking dashboard: building energy consumptions compared year by year; note the anomaly Gas metering for building n.1803 on 2021.

• LLUC-3B-ROM-03 – Forecasting

The Forecasting functionalities are periodically used by the officers of SIMU Department engaged in administrative tasks, including the Forecast Reports on expenditure.

Figure 39 : Pilot 3b-ROM-03 – Forecasting dashboard: whole asset energy consumptions for Gas (PDR) and for Power (POD) meters. First algorithm PROPHET.

The Covid restrictions impacted on the energy Consumptions depending on relevant reduction of most of the municipal buildings, so different algorithms were been developed, tested and then 2 of them implemented (Prophet and DeepAR) in order to take into account the anomalies in the time-series induced by covid emergency. The aggregation for Districts or for buildings Typologies is one of the main task the users are conducting in order to produce periodic reports. KPI_07 is also a measure of the benefit and frequency of use of functions

within this service. An other KPI for this service related to the appreciation rating assigned by the users is the KPI-08.

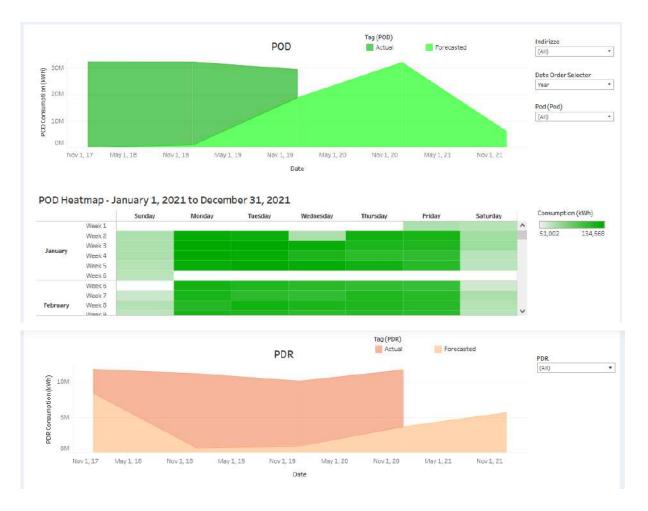
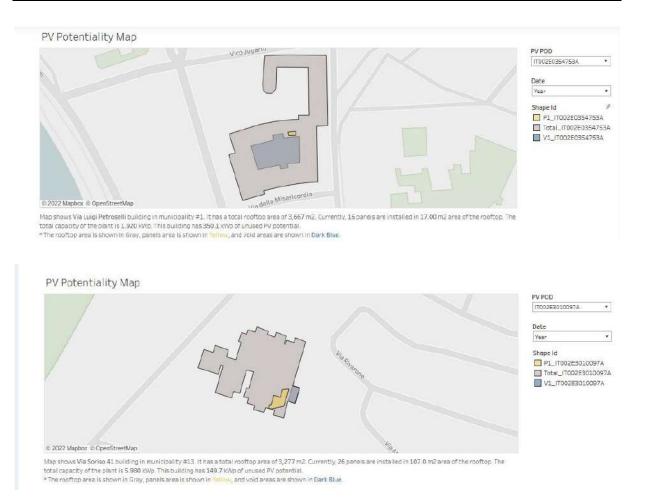



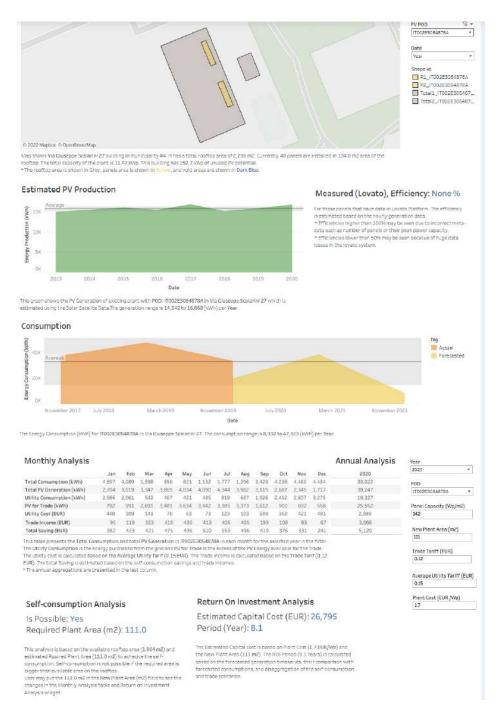
Figure 40 : Pilot 3b-ROM-03 – Forecasting dashboard: whole asset energy consumptions for Gas and for Power meters. Second algorithm DeepAR. A POD Heat map is also presented.

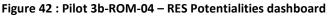
• LLUC-3B-ROM-04 - RES Potentialities (PV plants on roofs)

This service is highly appreciated in the SIMU Department as it supports directly the planning process for PV plants asset extension on the owned buildings roofs. During the project the introduction at national level of new public incentives and connection schemes related to Renewable Energy Communities (REC scheme, Sharing PV energy surplus with other proximity users) prompted the pilot project team to redefine the scope and implementation of this service 3b-ROM_04 in order to obtain the estimation for each roof of the maximum peak power and the maximum PV production surplus (over the self-consumption quote of the building).

Figure 41 : Pilot 3b-ROM-04 – RES Potentialites dashboard: for each building hosting a PV plant the map shows and calculates the free surface useful to expand the PV plant.

The KPI_06 (kWh/y of RES production that can be installed on the roofs) is now limited to the extension of 160 roofs already hosting an existing PV plants, where the algorithm calculates the free surface available, applying custom parameters for PV technology to simulate for the new PV plant, and gives as outputs the Total RES Production (kWh/y) that can be realized, the investment and the ROI.


The result is excellent (more than 1.200.000 kWh/y estimated from new PV plants) and can directly influence the planning strategy of the Municipality accelerating the design and the realization of many PV plants within the REC scheme.


The RES stakeholders, civil society organizations and the municipalities are going to meet and discuss in the next period to define the business model and the operative strategy for RECs on public roof, probably giving priority to school roofs, creating synergies also with an other EU funded H2020 project (SUN4ALL) involving the municipality since October 2021.

The services could be extended in the next future also to the roofs not already hosting any PV plant to calculate the new plant installation potentialities and also to estimate the costs and the CO2 impacts for these eventual future investments.

Automatic calculations can be improved introducing more accurate data on free surfaces and ideal orientation/tilt on the roofs.

The following figure shows the PV potentialities for each building roof where is possible to expand the PV plant, PV yearly production is estimated then the investment cost and the Pay-Back Time. The self-consumption is calculated and also some standard commercial features of the largest PV plant that seems feasible on that roof.

7.3 Conclusion

The evaluation of the pilot can be run at different levels : A. Energy Planning and Policy level; B. Information and Data Quality level; C. Energy Efficiency Technical level.

The consideration concerning the impact of the pilot on the Energy Planning and Policies (A) of Roma Capitale have to be updated once the Energy management organization of the municipality will be restructured (New Directorate on Climate) and once the CDP will be ready to host and publish Energy Data and will be connected with the Pilot Data. At present the impact that is verifiable and measurable is at the Energy Management Office level that benefit in terms of responsiveness, of completeness and depth of the cognitive picture, of full integration of the dashboard and the datasets on energy consumption and production (PV). In particular recently the PV potentialities service gained the attention of decision makers in the Municipality as the plan to design and realize Renewable Energy Communities – RECs – based on new PV plants on public roofs, is going to be discussed also in coherence with the Rome SECAP 2020-2030. Therefore the impact of Platoon Toolbox (Service 04) is resulting very relevant on the energy planning and policy level.

On the other hand, the Information & data quality level (B) evaluation is an ongoing process that focuses on the different data sources and on their evolution in time. The power and gas meters large asset analysed is evolving quickly grace to the installation of new generation meters, where the quality and frequency and accessibility of data is improved. At the same time the vendors and energy service providers change and can offer different data connectors (active connector to push data from their server) or web services (passive connectors to pull data from their communication services). Furthermore within WP7 the pilot has been enriched with near Real Time data coming from sensors (2400 assets for Heating and 15 Test sensors for Electricity mounted by the power meters) that are demonstrating a significantly increase in the Data quality, although this nRT and connectors sub-pilot has been completed on M35 so it is impossible to proceed with full user tests and energy analysis for these collected hi-frequency data flows.

The Energy Efficiency Technical Level (B) evaluation can be effectively conducted through most of the KPIs presented. This evaluation aims to describe and report the impact in terms of Energy Efficiency and End User experience (Officers of the SIMU department dealing with Energy management data and tasks) that the Pilot is producing or can produce in the next future, as during the first semester after M36 the end users will intensify their application on the toolbox. The complete results for all KPIs have been presented in par. 7.2

The KPI_01 (KWh/y saved already achieved 1.1 % of the total 87.000.000 kWh/y in power consumed) and the correlated KPI_05 (reduced CO2) together with KPI_02 (Personnel cost reduction) are the main indicators of the impact of the Pilot-3b-ROM toolbox in terms of energy transition and sustainability and more specifically in terms of improved behaviours of the personnel (SIMU Department – Plants Operative Unit) engaged in the energy management of the Rome Municipality asset.

The general idea is that each session or use of the Toolbox (KPI_07) can produce knowledge, information and indications on how to improve the energy efficiency of this large asset of buildings. This awareness can result directly or indirectly into actions. Direct actions on buildings plants, meters or management can be recorded in the notification area of the toolbox marking the date of each specific intervention and consenting to later calculate the reduction of the EC for the correlated meters. This means that only few types of direct actions consent to use the toolbox to quickly calculate the KPI_01 (i.e. dismission of meters) while the majority of the enabled interventions need a longer observation period to calculate the effective resulting savings. The toolbox services for forecasting can help to estimate the expected saving after one or two months from the intervention on the basis of the data flow frequency coming from the meters.

Indirect actions to improve energy efficiency consist in planned interventions or scheduled maintenance; in this case the KPI_01 validation will proceed with the recording of the scheduled intervention in the notification area and with the estimation of the future impact in terms of yearly saved energy.

KPI_08 focuses on the direct evaluation of the four services by the end users in the SIMU department, and even if the toolbox dashboard has to be considered a beta-release most of the users ratings are above the threshold, so sufficient, and the users comments and suggestions will help the evolution of the platform within the exploitation plan in order to match at the best their practical needs and the specific expectations.

8. Pilot 3C Evaluation & Validation Report

8.1 Introduction

Pilot 3c focuses CIC Nanogune building which is a public research center located in San Sebastian (SPAIN) managed by GIROA-VEOLIA. The building has 7319 m2 distributed over six floors and it contains offices, 15 ultra-sensitive laboratories and a cleanroom of nearly 300 m2 where the air purity is under strict supervision. The building has a BMS system and PV panels installed on the roof. Pilot 3c focuses on two main low-level use cases:

- LLUC-3C-01-Advanced EMS
- LLUC-3C-02-Predictive Maintenance

8.2 LLUC-3C-01-Advanced EMS

The objective of this use case is to match the demand prediction and RES generation prediction and to optimize the operation of building HVAC in order to achieve two objectives: (1) reduce the grid dependency and (2) reduce the energy bill.

8.2.1 Evaluation and Validation

KPI #	Description	Target Value	Actual Value	Comments		
1	Integration	1	0.8	IDS connector between TECN		
				and GIR could not be		
				implemented due to a conflict		
				between Veolia's server		
				structure and security		
				protocols, which don't seem to		
				allow the process to issue an SSL		
				certificate required to pull data		
				through the tunnel.		
				Howeverver IDS connector was		
				implemented between		
				Barabara IoT and TECN as part		
				of the open call in WP7.		
2	Energy Bill reduction	20%	51%	Results seem promising.		
3	RES utilisation ratio	30% increase	7.5%	However, it must be		
				highlightred that validation are		

Table 29: LLUC-3C-01- KPIs evaluation

not fully representative as it has been validated with one week. Further validation would be
needed with a longer time
range.

The tools were trained with data from 01/07/2021 to 29/08/2021 and validated with wo weeks of data one for hot conditions (24/082021-31/08/2021) and one for cold conditions (14/11/2022-20/11/2022) showing good generalisation capacity.

The figures below show the validation results for the 16th November 2022:

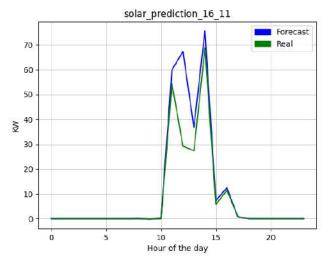


Figure 61: LLUC-3C-01-PV Forecaster – Predicted vs Real PV energy generation

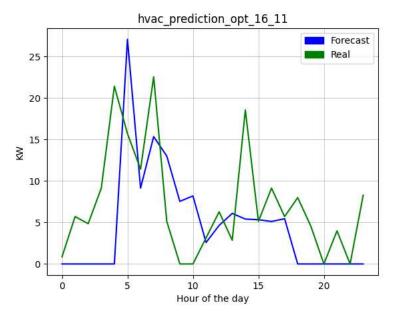
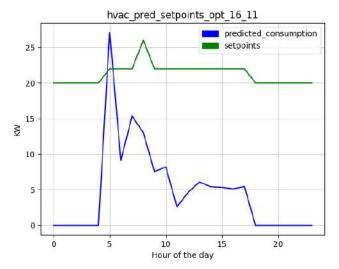
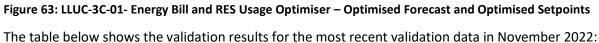




Figure 62: LLUC-3C-01- Energy Bill and RES Usage Optimiser – Optimised Forecast vs Real HVAC energy consumption

Table 30- LLUC-3C-01-Validation data results	

Energy HVAC - A (euros)	Bill Actual	Energy Bill HVAC - After Optimisation (euros)		Overall energy consumption HVAC + Base (kWh)
-------------------------------	----------------	--	--	--

14/11/2022	36	19	6	345
15/11/2022	22	9	8	263
16/11/2022	17	10	28	248
17/11/2022	25	5	29	353
18/11/2022	39	27	38	411
19/11/2022	28	11	30	456
20/11/2022	22	11	38	272
Total	188	92	177	2348

Results seem promising. However, it must be highlightred that validation are not fully representative as it has been validated with one week. In addition the validation is done in November where the HVAC consumptions is high and PV generation is low. Unfortunately, it could not be validated with more data due to some problems with GIR database persistence. The problems are solved now so further validation should be be completed with a longer time range to be able to get relevant conclusions.

8.3 LLUC-3C-02-Predictive Maintenance

The main objective of this use case is to have a centralised control of the health status of different equipment of the building HVAC system based on the readings from multiple sensors for each machine. Amongst all the machines that form the building HVAC system, this use case focuses on two types of machines:

- 1. Hydraulic Pumps
- 2. Chillers

8.3.1 Evaluation and Validation

8.3.1.1 Hydraulic Pumps

Table 31: LLUC-3C-02-Hydraulic Pumps-KPIs evaluation

KPI #	Description	Target Value	Actual Value	Comments
1	Health Monitoring	100%	100%	The developed algorithm is able to distinguish well the healthy and non-healthy operation using test data from an open-source dataset. Now we are validating with real data from GIR.
2	Failure Forecast	24 hours	~3 hours (170 mins)	The system is able to detect failure 3 hours in advance which is below the target value but should be enough time to be able to start the twin pump and avoid stopping the system.
3	Availability	N/A	N/A	This KPI cannot be applied in the case of pumps as there is no sufficient information to calculate it.

4	Mean Time Between Failures	N/A	N/A	This KPI cannot be applied in the case of pumps as there is no sufficient information to calculate it.
5	Maintenance Costs	N/A	N/A	This KPI cannot be applied in the case of pumps as there is no sufficient information to calculate it.
6	Integration	1	0.9	Implemented all the pipeline the using the Barbara OS except IDS part that not working due to issues with proxy and communications. Still pending integration with PLATOON edge-cloud framework.

In order to validate the data analytic tool for predictive maintenance of hydraulic pump different size of training datasets have been considered. For illustrative purposes the 100 vs 100 configuration has been represented. 100 vs 100 means that first 100 samples (files) have been used for training and last 100 samples (files) have been used to validate the outcomes. The expected result would release a failure scenario for no more that 10-15 final samples.

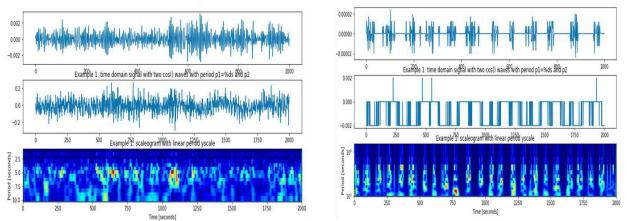


Figure 64: LLUC-3C-02-Hydraulic Pumps-Behavior for the first and final samples

Equally, different algorithms have been validated, namely a SVM OneClass Classifier, k-MEANS OneClass Classifier and DEEP AutoEncoder OneClass Classifier. Amongst all of them the one that produced the best results was the DEEP AutoEncoder OneClass Classifier. Equally, for each of the algorithms different hyperparameters have been attempted. The table below shows the validation results for different hyperparameter combination of the DEEP AutoEncoder OneClass Classifier.

The results shown below have been used to identify which was the optimal or at least the appropriate size for the training and testing datasets. It is important to mention that the anomaly detection algorithm is implemented as a streaming algorithm, so, inappropriate sizes of datasets could lead to identify all testing samples as anomalies or the other way around, to not detect any anomaly.

Modelo	DataSet	Train	Test	Anomalies Result
Relu – MSLE	100	90	10	from 10 to1
Relu – MSLE	200	190	10	from 10 to1
Relu – MSLE	300	290	10	from 9 to 1
Relu – MSLE	300	290	20	from 13 to1
Relu – MSLE	600	530	50	from 42 to 30
Relu – MSLE	600	600	50	from 17 to 3
Relu – MSLE	600	600	100	from 17 to 3

 Table 32:
 LLUC-3C-02-Hydraulic
 Pumps-Results
 for
 different
 hyperparameter
 combination
 of
 the
 DEEP

 AutoEncoder OneClass Classifier

Analysing the results, delivered using the autoencoder approach with "ReLU" activation function and "MSLE" reconstruction metric provided it can be concluded that the optimal train and test dataset size are in the window of 500 to 600 samples from training and 50 to 100 samples for testing. Using values within that range the count of anomalies detected in the testing data was in worst case the 20%. Values above that 20% would mean too many samples classified as anomaly on the other side of the window, accept al samples as normal behaviour wouldn't be interesting either. In order to maximize the computational performance the tuple of 500 as train dataset size and 50 as test dataset size were selected

After selecting the appropriate size for the training and testing datasets, the FEMTO and IMS were tested with the implemented vibration PHM tool described in D4.10. The tests carried out released that only de AutoEncoder approach was reliable enough to implement a PHM tool free of "False Negatives", this means failures without previous notification.

The table below describes the outcomes for the two best scoring implementations, AutoEncoder and OC-SVM algorithms. The sample count in test count the amount of valid data reading to bearing failure. The change point and rest of columns indicate in which sample was detected the behavour change of the bearing and how much it supposes in real time to failure and percentage time to failure or the remaining useful life in each case.

Test Id	Algorithm	Sample count in test	Change point sample	Time to Failure	Time to Failure (%)
IMS	Auto	2156	920	206 hours	57%
Test 1	Encoder				
IMS	Auto	2156	1390	127 hours	35%
Test 2	Encoder				
FEMTO	Auto	3269	1890	2hours 30	32%
Test 1	Encoder			mins	
FEMTO	Auto	1015	826	7 minutes	4%
Test 2	Encoder				
FEMTO	Auto	1802	1311	81	27%
Test 3	Encoder			minutes	
IMS	OCSVM	2156	600	259 hours	72%

Test 1					
IMS	OCSVM	2156	None	Not	
Test 2				Available	
FEMTO	OCSVM	3269	420	6 hours	85%
Test 1				40 mins	
FEMTO	OCSVM	1015	826	7 minutes	4%
Test 2					
FEMTO	OCSVM	1802	None	Not	Not
Test 3				applicable	applicable

In order to evaluate the feasibility of the implementation the computational requirements were evaluated for most reliable approach ,AutoEncoder. The table below describes the average values for the AutoEncoder implementation:

Table 34:LLUC3C-02-Hydraulic Pumps- Average computational time for the AutoEncoder implementation

Model Size	First Train	Time	50 Samples		50 s	amples
	(average)		Incremental	Train	evaluation	Time
			(average)		(average)	
IMS 500 samples	190.7 seconds		28.1 seconds		6.5 second	5
FEMTO 500 samples	90.7 seconds		8.1 seconds		6.5 seconds	5

With all the preliminary implementation and evaluation work described above the whole vibration PHM tool chains was moved to an edge framework deployment at NanoGUNE building. The results of a monitoring campaign of 8 months can be summarized as:

- Anomalies were detected in several stream data samples
- Aggregated anomalies time series did not deliver any behavioural change.
- The effective PHM tool chain described a healthy pump

The figure below shows the validation results for GIR pilot in CIC NanoGUNE in healthy operating conditions as described above:

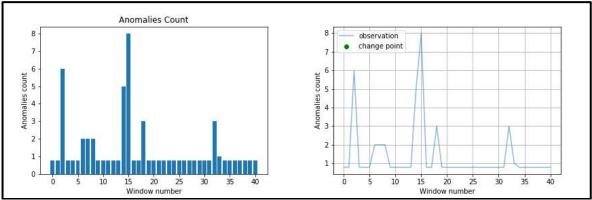


Figure 65: LLUC3C-02-Hydraulic Pumps- Validation Results – NanoGUNE

As a conclusion it can be noted that the current algorithm is looking into the symptom (vibration) rather than the cause (bearing crack due to fatigue). The bearing crack is a sudden phenomena, so, it

is difficult to predict much in advance just looking into vibrations. Thus, in order to be able to predict failure in advance, we should look into the cause by using some type damage accumulation formula (e.g. Palmgren-Miner). However, this is a totally new approach that is out of the scope of the project but could be explored in a new project.

Regarding the integration KPI, all the pipeline has been validated using the Barbara OS and everything is working except the IDS part due to issues with proxy and communications. The corresponding evidence is included in the test report as part of Open Call deliverable part of WP7. Also, PLATOON edge-cloud framework has been implemented as an alternative to the Barbara OS system.

Finally, the data analytics tools have been validated with real data from GIROA. However, this has 2 main limitations: on the one hand, we have limited data as the sensors were recently installed. On the other hand, we don't have failure data, so, we are just be able to test that the algorithm predict well in healthy operating conditions.

KPI #	Description	Target Value	Actual Value	Comments
1	Health Monitoring	0-100%	0 - 100%	This is an aggregated Health Status view of the machine, based on the
				Health Status of the different elements
				of the machine. It is based on a
				weighted average formula
1.1	Energy Variator	R ² >= 0,85	R ² = 0,92	Digital twin models show high accuracy
				with the real data. The system can
				detect whether a fault has occurred.
1.2	Evaporator Outlet	R ² >= 0, 85	R ² = 0,92	Digital twin models show high accuracy
	Temp			with the real data. The system can
				detect whether a fault has occurred.
1.3	Flow Meter	MAE <= 2	MAE = 1,53	The high variability of this scenario
				requires different Scorer for the
				validation. Using a MAE verification
				below 2% we can distinguish a Bias of
				1,8% (112m ³ h vs 2m ^{3h)}
1.4	Power	R ² >= 0, 85	R ² = 0,96	Digital twin models show high accuracy
	Consumption			with the real data. The system can
	Increase			detect whether a fault has occurred.
1.5	Temp Increase	R ² >= 0, 85	R ² = 0,915	Digital twin models show high accuracy
				with the real data. The system can
				detect whether a fault has occurred.
1.6	Phase Imbalance	Imbalance %	Imbalance %	Rule based indicator detects health
				status problem if the imbalance of the
				voltage of phases is over 3%
1.7	Power Supply	R ² >= 0, 85	R ² = 0,915	Digital twin models show high accuracy
				with the real data. The system can
				detect whether a fault has occurred.

8.3.1.2 Chillers

Table 35: LLUC-3C-02-Chillers-KPIs evaluation

PLATOON

1.8	Starter	MAE <= 2	MAE = 1,42	The high variability of this scenario requires different Scorer for the validation. Using a MAE verification below 2% we can distinguish a Bias of 1,8% (112m ³ h vs 2m ^{3h})
2	Availability	0 – 100%	99.58%	Thanks to CMMS Integration, we are taking required information to generate and import availability KPI to the main dashboard
4	Mean Time Between Failures	Calculated KPI	272514 h	Thanks to CMMS Integration, we are taking required information to generate and import MTBF KPI to the main dashboard
5	Maintenance Costs	Calculated KPI	260€	Thanks to CMMS Integration, we are taking required information to generate and import MTBF KPI to the main dashboard
6	Integration	1	n/a	For the Pilot 3C, the integration with IDS has been developed for the low- level use case LLUC-3C-02-Hydraulic Pumps. The IDS approach does not make sense with Promind because it will always be running as on-premise architecture.

The main KPIs to be validated and the ones with greater interest for the Giroa business are the ones related whit the Health Status of the chiller.

Each failure mode has been thought as a process. Having in mind the failure mode of the machine, an output signal has been selected to represent the output of the process. The same principle has been applied for the input signals, so the ones which are representative of the failure mode process has been selected as input.

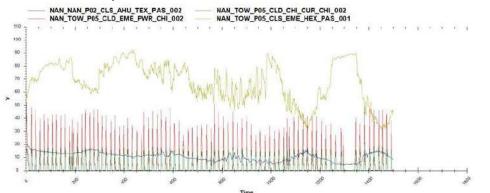


Figure 66: LLUC-3C-02-Chillers-input signals for Energy Variator model

Two ML approaches have been used to achieve best accuracy. Multilayer perceptron (MLP) and Random Forest models. After some benchmark testing the MLP model achieved the best accuracy. Hyperparametrization review has been performed with a result having the best performance with one

PLATOON

Contract No. GA 872592

Page 122 of 227

hidden layer of 10 neurons, decay of 0,001 and learning rate of 0,01. The available real data has been split in 70% for training data and 30% for testing data.

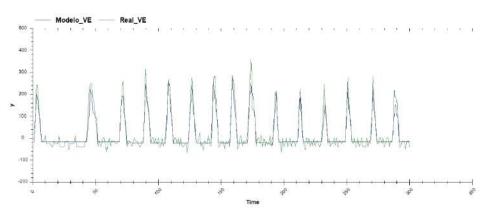
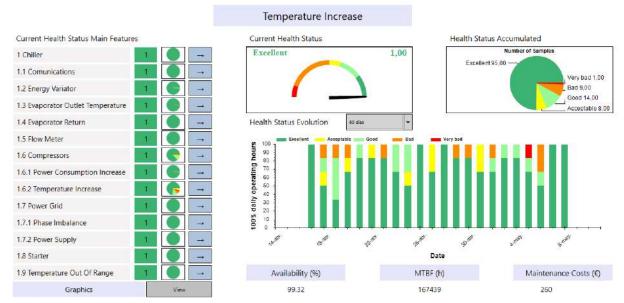



Figure 67: LLUC-3C-02-Chillers-Measured ThermicPower vs Predicted ThermicPower (Energy Variator Output)

All the KPIs are calculated and consolidated into a custom dashboard as shown in the figure below.

Figure 68: LLUC-3C-02-Chillers-Interactive dashboard for the hierarchical view of Health Status. Temperature Increase detail

8.4 Conclusion

As a result of the first validation it can be concluded that regarding Advanced EMS, the results seem promising specially regarding energy bill reduction showing a reduction of over 50%. However, it must be highlighted that validation is not fully representative as it has been validated with one week data due to some issues with GIR database. The problems are solved now so further validation should be be completed with a longer time range to be able to get relevant conclussions.

Regarding the predictive maintenance use case, it has been completed satisfactorily. On the one hand, the Hydraulic Pumps predictive maintenance tool has been validated with real operation pilot data

from GIR and IMS and FEMTO data open data sources showing acceptable results in terms of health monitoring and failure detection. On the other hand, the results obtained from the Health Status analysis for the Chiller are of great interest. The system is able to determine whether the machine is working properly or if there is a malfunction problem not only at a machine level, but also identifying the machine-part or failure mode which is causing it.

9. Pilot 4A Evaluation & Validation Report

9.1 Introduction

This pilot takes place at the Multi-Good Microgrid Laboratory (MG2lab) in Politecnico di Milano, Italy. There is a single use case focused on Energy Management of Micro-grids (LLUC-4A-01) which aims to study data-driven energy management able to deal with increased complexity of the energy systems and to assess the advantages of innovative strategies: EMS with real-time processing and optimization for small-scale/renewable electricity generation, generation and load forecast, smart storage/generation.

9.2 LLUC-4A-01 Energy Management of Micro-grids

This use case focuses on data analytics tools aimed at the optimal exploitation of distributed renewable energy resources by means of an Energy Management Systems (EMS) with real-time processing and optimization for small-scale/renewable electricity generation, including specific implementation of day-ahead load consumption/generation forecast and nowcast capability. Indeed, the EMS is the algorithm that manages the forecasting modules for loads consumption and renewable energy production in view of the real-time management of all the energy assets in the micro-grid. The final aim is the optimization of unit commitment and scheduling of the energy resources on the base of these predicted profiles.

9.2.1 Evaluation and Validation

KPI #	Description	Target Value	Actual Value	Comments
1	Energy availability	90%	>90%	Percentage of energy provided by renewable sources with respect to the measured consumption (the higher, the better).
2	Cost	10%	<10%	Reduction of efforts and costs in terms of percentage of energy from the electrical grid with respect to total energy consumption (the lower, the better).
3	Forecast Accuracy (%error)	20%	<20%	Accuracy of forecasting in terms of percentage error with respect to the daily

PLATOON

				measured energy (the lower,
				the better).
4	Realtime	80%	>80%	Ability of the system to monitor, forecast and optimize data in real time (the
				higher, the better).

In order to validate the data analytic tools for Energy Management of Microgrids developed in WP4, the different tools have been trained and tested with data from the MG2lab of Politecnico di Milano. A sample of the real-time collection of measurements of the MG2lab and the results of the implementation of this pilot specific tools is presented below, in Figure 69.

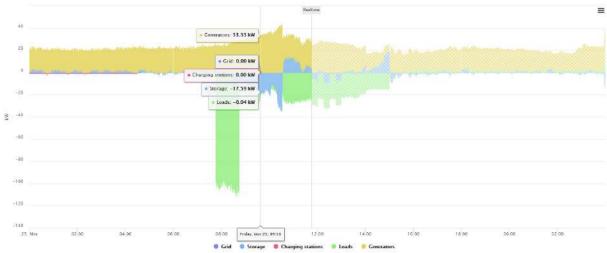


Figure 69: LLUC-4A-01-power production, storage and consumption of the microgrid in real time view.

To ensure the performance of the microgrid energy management, optimization and control, and to measure its efficiency, suitable key performance indicators have been defined to assess the meeting of the requirements and the targets defined for pilot 4a. In particular, 4 KPIs have been specifically defined, which have been finally evaluated on the last months of the project development; these validation tests were also important to provide feedback for improvement of the optimization of the energy management system.

Figure 70: LLUC-4A-01-KPIs dashboard with a summary of the results of the relevant KPIS in the last part of the validation phase.

Regarding the KPI #1, related to energy availability, this indicator measures the percentage of energy provided by renewable sources with respect to the measured energy consumption, when the optimization for renewable electricity generation is performed considering smart storage and generation. In order to be able to evaluate this KPI, real power production ($P_{PV,t}$) and consumption ($P_{load,t}$) measurements are collected in real time at each considered time step from the micro-grid monitoring system, as described in the formula reported in the Annex I. The testing period spans across 24 hours, thus this KPI is computed with daily frequency by summing up the measured power values over the last 24 hours. The related results (in percentage) are reported into the consolidated dashboard (as shown in Figure 70). While higher percentage values correspond to a successful result in terms of energy availability, with an ideal target of 100% for this indicator, a threshold of 90% can be considered satisfactory.

Regarding the KPI #2, related to costs, this indicator measures the reduction of maintenance effort and costs in terms of percentage of energy from the electrical grid with respect to the total energy consumption, when the optimization for renewable electricity generation is performed considering smart storage and generation.

In order to be able to evaluate this KPI, real power production $(P_{PV,t})$ and consumption $(P_{load,t})$ measurements are needed, as described in the formula reported in Annex I. These measurements are stored within PLATOON platform data storage, obtained in real time at each considered time step from the micro-grid monitoring system and the related results (in percentage) displayed into the consolidated dashboard. The minimum testing period is over 24 hours, but additional time horizons can be considered to provide an additional report on the performance of the system, thus this KPI is

to be computed with daily frequency by summing up the measured power values listed above over the last 24 hours, but results will be also aggregated to longer time ranges with the increasing of collected data.

While lower percentage values correspond to a successful result, with an ideal target of 0% for this indicator, a threshold of 10% can be set as a satisfactory target in terms of energy cost.

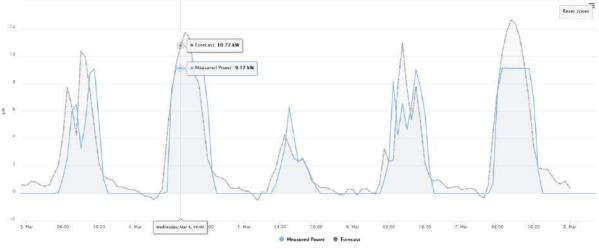


Figure 71: LLUC-4A-01-renewable power production and related forecasting.

Regarding the KPI #3, related to forecast accuracy, this indicator measures the accuracy of forecasting in terms of percentage error with respect to the daily measured energy, both for production and consumption, in particular considering the well-known normalized Root Mean Square Error indicator (nRMSE) and the recently introduced Envelope Mean Absolute Error indicator (EMAE), as described in the formula reported in Annex I.

In particular, this KPI is computed considering the daily power forecast with respect to its daily measurement, as reported in Figure 71. In order to be able to evaluate this KPI, power forecast $(P_{f,t})$ and real measurements $(P_{m,t})$ are collected and stored within PLATOON platform data storage, obtained in real time at each considered time step from the micro-grid monitoring system. The testing period is over 24 hours, thus this KPI is computed with daily frequency, by summing up the power values over the last 24 hours, and the related results (in percentage) displayed into the consolidated dashboard.

While lower percentage values correspond to a successful result in terms of forecasting accuracy, with an ideal target of 0% for this indicator, a threshold of 20% can be considered satisfactory for this forecasting accuracy.

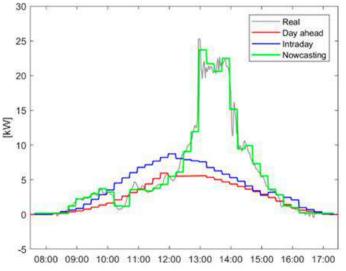


Figure 72: LLUC-4A-01-real time power forecasting adjustments by means of nowcasting technique.

Regarding the KPI #4, related to realtime capability, this indicator measures the ability of the system to monitor, analyse and optimize forecasting results at real time rate, when the prediction for renewable electricity generation is performed considering current weather conditions. In particular, the KPI related to realtime capability is measured considering the forecast skill of the nowcasting feature with respect to day-ahead forecasts, according to the formula reported in Annex I.

In order to be able to evaluate this KPI, the day-ahead power forecast $(P_{f,t})$ the most updated nowcast values $(P_{n,t})$ and the corresponding real measurements $(P_{m,t})$ are needed, as shown in Figure 72. These data and measurements are stored within PLATOON platform data storage, obtained in real time at each considered time step from the micro-grid monitoring system. The testing range spans across the last 24 hours, thus this KPI is computed with daily frequency and the related results (in percentage) displayed into the consolidated dashboard.

While higher percentage values will correspond to a successful result, with an ideal target of 100% for this indicator, a threshold of 80% can be set as a satisfactory target in terms of realtime capability of nowcasting.

9.3 Conclusion

As a conclusion of the exploitation and validation phase, it can be drawn that the implemented energy management system (EMS) for the experimental microgrid of Politecnico di Milano was able to reach the target KPIs regarding the renewable energy generation management and forecasting capabilities, thanks to the implemented robust optimization approach, based on the developed forecasting techniques.

The display of all the results in a consolidated dashboard (as shown in Figure 70) allows to visualize the KPI aggregation on different time horizons in order to appreciate the progress made during the last phase of the project. KPIs values appear to be aligned with the target defined at the beginning of the validation phase (and reported in Table 36), although some of them could be reached only towards the end of the project, in the last validation phase.

As a consequence of the presented results it can be concluded that the use case related to Energy Management of Micro-grids been completed satisfactorily.

The implemented real-time data collection allows to keep continuously updated the KPIs in order to maintain their consistency with the threshold values and the overall system target performance.

10. PLATOON Common Components Evaluation & Validation Report

10.1 Introduction

This section covers the validation results of the cross-pilot PLATOON common components.

10.2 Marketplace - IDS Metadata Registry (Broker/Appstore), Clearing House, DAPS and Vocabulary Provider

The PLATOON Marketplace is one common endpoint to access the data and energy services provided by all pilots. PLATOON Marketplace comprehends the following IDS components:

- Metadata Registry
- Graphical User Interface (GUI)
- Clearing House
- Dynamic Attribute Provisioning Service (DAPS)
- Vocabulary Provider

10.2.1Evaluation and Validation

KPI #	Description	Target Value	Actual Value	Comments
1	Metadata Registry Integration	1	0.8	Metadata Registry has been successfully integrated with IDS DAPS and Connectors. The AppMessageHandler has been tested with DSC which was modified to perform the validation. The installation of the App through Connector is still an on going process and will be finished by M36.
2	GUI Integration	1	0.9	GUI was successfully developed for the Marketplace. Some pilot partners have tested and interacted with the UI.
3	Clearing House Integration	1	0.6	A new instance of Clearing House based on the latest release by Fraunhofer AISEC has been successfully deployed in the marketplace. The communication with the Clearing House has been tested with the TRUE Connector.
4	DAPS Integration	1	1	DAPS has been successfully integrated in the Clearing House and Metadata registry.

				All components interacting with the marketplace are authenticated through DAPS.
5	Vocabulary Provider Integration	1	0.8	Vocabulary Provider has been successfully integrated with IDS DAPS and Connectors. Integration with PLATOON datamodels is still pending as they have not been uploaded yet to a repository.

The PLATOON Metadata Registry has been successfully integrated with the TRUE Connector. As Figure 73 shows, the locally installed connector is running at <u>https://localhost:8084</u> and the Metadata registry is running at <u>https://localhost:8080</u>. The "Forward-To" in the header of the message contains the URL of the Metadata Registry. The "ids:MessageProcessedNotificationMessage" shows that the local connector is successfully registered in the Metadata Registry.

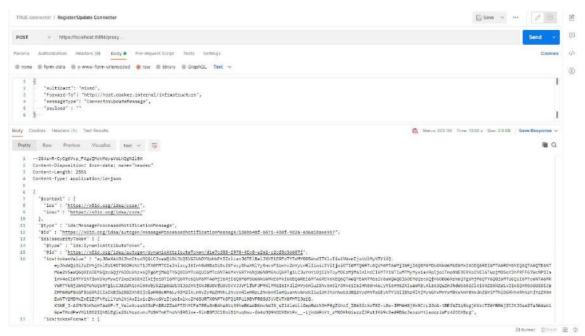


Figure 73:PLATOON Common Components - Integration of TRUE connector into the Metadata Registry

All the IDS components are authenticated through the DAPS. Figure 74 shows that when the upcoming Token from the connector is not Valid, Metadata Registry sends "ids:RejectionMessage" with the "Error verifying token".

TitulE connector / Register/Update Connector	🖹 Save : 🛩 🛶 🧭 🔳	1
POST 👳 https://coultast8084/pray	Send, ~	C
Params Authorization: Headers (8) Body Pre-request Script Tests Settings	Caokies	
🕲 none 🚳 form-data 🚳 w-www-form-untencoded 🐞 raw 🌚 binary 🚳 GlaphOL. Text 🗢		2
1 *mliisast": "mised", 3 **Pormend-To": "http://host.douker.internal/infrastructure", 4 **mesogeTripe": "Commentationalesside", 5 **aaylaad"::**		
tudy Cookies Headurs (5) Test Rosuits	🕰 Status 200 CK Time: 245 a Site: 300 KB Save Response 🗸	
Pretty Raw Providew Visualize Taxet ~ 🛱	iii م. ا	
<pre>742 "#45": "https://localhopt/" 743 '#45': "https://localhopt/" 744 '#45': "https://localhopt/" 744 '#45': "https://mid.sig.freunhofer.de" 745': "https://mid.sig.freunhofer.de" 744 '#45': "https://mid.sig.freunhofer.de" 744 '#45': "https://mid.sig.freunhofer.de" 745': "https://mid.sig.freunhofer.de" 745': "https://mid.sig.freunhofer.de" 746': "https://mid.sig.freunhofer</pre>		
44 Content Column 2 44 45 Error verifying toxen. 4keprimus-toxet-starket vitit-		
40 Sexpddiveriging-utilierikirisina?exist	E Bunder Differe	

Figure 74: PLATOON Common Components - Integration of DAPS into the Metadata Registry

A GUI specific for PLATOON Marketplace has been developed and integrated into the Metadata Registry. The User Interface contains a Dashboard that shows the summary of all the registered Connectors, Resources, and Apps (services) in the Metadata Registry as shown in Figure 75. The **Datasets** and **Apps** windows shows the list of all the Resources present in the UI. If one clicks on any a dataset or an app, the window will show the details of it as shown in Figure 76.

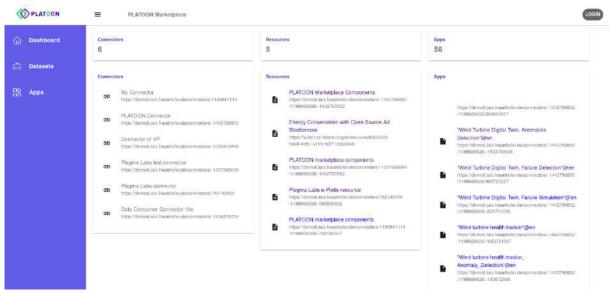


Figure 75: PLATOON Common Components - UI Dashboard

DEATOON	E PLATCON Marketplace			G
Dashboard	6			
Catasets	PLATOON marketpla	ce components		
BE Appre	Original D https://demo6.lais.fraumofer.deic Resource Cescoption Dela Information for all the components of PLA Average rating * * * * * Daved on 1 ratings)		668626/-1442790852	
	Resource Mess Data Reyword comparent (PLATODA) (data)	Version version 3.9.6	Langunga German, Englañ	Content Types https://wiki.org/daa/code /wEEntAcce_EEStwathcok
	Data Drietor Data snabr Ovner	Created 2003-01-10	Maalfied 2020-01-29	Author Imps: Valid.org/data/bs/toper-penson Retri a Via-7116- costs-telea-1728/tyle4.me
	Commissional http://contentistandard.org	Payment Modulty https://w3kd.org/idsa/or	de/FREE	

Figure 76: PLATOON Common Components - Dataset Window of the UI

The Data Space Connector has been modified so that user can insert their metadata from the Data Analytic Toolbox as shown in the image below:

ustom-controller		
POST /api/customs/ap	pregistration	ر ا
Parameters		Try it out
Name	Description	
appid * weakled string (query)	appld	
URI * required string (query)	UR	
Title * required string (query)	Titio	
Description * required string (query)	Description	
version * required string (quary)	version	
keywords * required string (query)	koywords	
nputParameter * Hower string (guery)	inp:#Parameter	
outputParameter * wywied string (auery)	outputParameter	
hyperParameters * ^{sequend} string (query)	bypotParamoters	
contactInformation * remined string (gaery)	contectinformation	

Figure 77: UI to register App from Data Analytic Toolbox through DSC

The modified DSC also allows users to unregister their App from the Metadata Registry as shown in the image below:

FOST /api/customs/appunregistration	^
Parameters	Try It out
Name Description	
appld * recover string (every)	
Responses	
Code Description	Links

Figure 78: UI of DSC to unregister an App

Besides, the newest IDS Clearing House has been deployed for PLATOON. This component successfully integrates the DAPS. Without a proper Dynamic Attribute Token (DAT) coming from the DAPS, the Clearing House will not log anything and through a rejection message as shown in Figure 79.

tc-core	2822-86-17 12:07:56.589 DEBUG 1 [qtp41347384-46] d.f.a.l.i.d.d.a.AisecDapsDriver	: AKI: CB:BC:C7:B6:85:79:A8:23:A6:CB:15:AB:17:50:2F:E6:6
5:43:5D:EB:	2022-00-17 12:07:56.589 DEBUG 1 [gtp41347384-46] d.f.g.i.i.d.d.g.AisecOopsDriver	: 5KT: 7A:28:DD:2A:14:22:A3:50:30:EA:FB:60:72:6A:FB:2E:5
8:41:CB:C0:		
tc-core	2022-06-17 12:07:56.659 INFO 1 [gtp41347384-46] d.T.a.(.L.d.d.a.AlsetDapsDriver	: Retrieving Dynamic Attribute Token From DAPS
tc-core	2022-06-17 12:07:56.659 DEBUG 1 [gtp41347384-46] d.f.a.i.l.d.d.a.AlsecDapsDriver	: ConnectorUUID: 7A:28:DD:2A:14:22:A3:50:3D:EA:FB:60:72:
6A:F8:2E:58:41:C	B:C0:keyid:CB:8C:C7:B6:85:79:A8:23:A6:CB:15:AB:17:58:2F:E6:65:43:5D:E8	
to-core token	2022-06-17 12:07:57.534 DEBUG 1 [qtp41347384-46] d.f.a.l.l.d.d.a.AisecDapsDriver	: Acquired DAT from https://daps.aisec.fraunhofer.de/v2/
tc-core	2022-06-17 12:07:57.535 DEBUG 1 [gtp41347384-46] d.f.a.l.t.d.d.a.AlsecDapsDriver	
	tIZzllen36TElBel3XVE1ERFdTYTdMY005WndITXlvIiwiYWxnIjoiUlMyNTYifQ.ey3hdWQi0i3pZHNjOklEU19DT05ORUN	
	iN@E6MkIGREQ6MkE6MTQ6MjI6QTN6NTA6M0Q6RUE6RkI6NjA6NzI6NkE6RkI6MkU6NTg6NDE6Q0I6QzA6a2V5aNQ6Q0I6OEM	
	uYMYLOjE2NTUØNjC2NzcsInlhdC16MTYINTQ2NzY3NywlanRpIjolTnpjeE1qa3lNelF5T0RJeE9EazVPRFE1TUE9PSIsImV	
	ĞRİĞNİAĞNZIĞNKEĞRKIĞMKUĞNTGĞNDEĞQƏIĞQZAĞƏ2V5ƏNQĞQƏIĞDEMĞQZCĞQİYGDDUĞNZKĞQTGĞMİNĞQTYĞQƏIĞMTUĞQUI	
	FQ1VSSVRZX1BST8Z3TEULLC3yZWZlcn3pbndDb25uZWN0b3IL0l3odHRwOl8vcH3vdmlkZXItY29yZ55kZW1vILwLQHR5cGU	
	leHRzL2NvbnRleHQuanNvbnxkliwidHJhbnNwb3J0Q2VydHNTaGEyNTYiOiIxYzE3NjAxZTk5NDg2Y2NiM2VjYNYxOWVhYTh	
	TX0NPTk5FQ1RPul9BVFRSSUJVVEVTX0FMTCJdfQ.qfljwh_7z08l5XdBGyUM1mKy1nUQJMg151kX0SA6EtaG776lyEgeNehQ	
	tdtkdGROnioNVZmxXWr_E4vFz4rgdl_KaRC_peW0lvaSGDdl-gZ9JhWZ34a8rjq-Udt0zsktWR38E5b75oDM7VK1-Ygljd4t	KU6cbJ03Wv29Oec6MAnx-7cDtqmuoS6Sduf8ntPJuuuUoMKEf8803auvViPP
	Ds4HhLoX6pNT_FIN64qYEpzg08IideQw_DKKfA	
tc-core	2822-06-17 12:07:57.535 DEBUG 1 [qtp41347384-46] d.f.a.l.L.d.d.a.alserDapsDriver	: Verifying dynamic attribute token
tc:core	2022-00-17 12:07:57.715 DEBUG 1 [qtp41347384-46] d.f.a.l.L.d.d.a.AlsecDapsDriver	: DAT is valid for 3000 seconds
te-core	2022-06-17 12:07:57.755 DEBUG 1 [qtp41347384-46] d.f.a.l.d.PollcyDecisionPoint	: Query for uncached label transformation: once(setof(S,
	'process[ref:CHOutputProcessor]', S), SC); SC = []),	
tc-core	collect_creates_labels(SC, ACraw), set_of(ACraw, Adds),	
tc-core	<pre>collect_removes_labels(SC, RCraw), set_of(RCraw, Removes).</pre>	
tc-core	2822-86-17 12:07:57.761 DEBUG 1 [qtp41347384-46] d.f.a.l.d.PolicyDecisionPoint	: Transformation: de.fhg.aisec.ids.api.policy.Transforma
tionDecision@672		
tc-core	2822-06-17 12:07:57.775 WARN 1 [qtp41347384-46] d.T.a.L.c.NultipartOutputProcessor	: Status Code: 401 with Payload: Token not valid!

Figure 79: PLATOON Common Components - Rejection log from the Clearing House when token is not valid

With a proper token with the integration of a Connector, the Clearing House responds with a successful message as an example shown in Figure 80.

Figure 80: PLATOON Common Components – Successful response message from the Clearing House with respect to the Connector's incoming message

Finally, the PLATOON IDS Vocabulary provider has been successfully integrated with the IDS DAPS as it is able to manage the tokens generated. Equally it has been successfully integrated with the IDS connectors and can receive several IDS messages according to the IDS information model. The figure below shows the response of a query message that allows to interrogate a specific ontology directly from an IDS connector.

OST	٣	https://localhost:8080/api/ids/data		
	Authori		Tests Settings) GraphQL	
KEY			VALUE	
header			{	
payload			Prefix rdfs: <htt< td=""><td>p://www.w3.org/2000/01/rdf-sch</td></htt<>	p://www.w3.org/2000/01/rdf-sch
Кеу			Value	
38 Cont 39 Cont	Raw Lenc-D tent-T	Preview Visualize Text = ==================================		
38 Cont 39 Cont 40 41 { "h	Raw tent-J tent-L nead":	Preview Visualize Text T		
38 Cont 39 Cont 40 41 { "h 42 43 }	Raw tent-T tent-L nead": 'vars	Preview Visualize Text = ==================================		
37 Cont 38 Cont 39 Cont 40 41 { "h 42 43 } 44 "r	Raw tent-T tent-L nead": vars , result	Preview Visualize Text = ==================================		
38 Cont 39 Cont 40 41 { "h 42 43 }	Raw tent-T tent-L nead": "vars , result "bind	Preview Visualize Text = ==================================		
37 Cont 38 Cont 39 Cont 40 41 { "h 42 43 } 44 "r 45	Raw tent-T tent-L nead": "vars , result "bind {	Preview Visualize Text		
38 Cont 39 Cont 40 41 { "h 42 43 } 44 "r 45 46 47 48	Raw tent-T tent-L nead": "vars , result "bind {	<pre>Preview Visualize Text</pre>		
38 Cont 39 Cont 40 41 { "h 42 43 } 44 "r 45 46 47 48 49	Raw tent-T tent-L nead": "vars , result "bind {	<pre>Preview Visualize Text</pre>		
38 Cont 39 Cont 40 41 { "h 42 43 } 44 "r 45 46 47 48 49 50	Raw tent-T tent-L "vars , result { " , } , {	<pre>Preview Visualize Text Find Text Preview Visualize Preview Preview Visualize Preview Preview Visualize Preview Preview Visualize Preview Preview Visualize Preview Preview Visualize Preview Preview Visualize Preview Preview Visualize Preview</pre>	value": "Energy un	it" }
38 Cont 39 Cont 40 41 { "h 42 43 } 44 "r 45 46 47 48 49 50 51	Raw tent-T tent-L "vars , result { " } , {	<pre>Preview Visualize Text Figure Text Preview Visualize Text Preview Text Preview Visualize Text Preview Text Preview Text Preview Text Preview Text Preview Text Preview Text Preview Text Preview Text Preview Text Preview Text Preview Text Preview Text Preview Text Preview Text Preview Text Preview Text Preview Text</pre>	value": "Energy un f.etsi.org/core/En	it" } ergy" } ,
38 Cont 39 Cont 40 41 { "h 42 43 } 44 "r 45 46 47 48 49 50	Raw tent-T tent-L "vars , result { " } , {	<pre>Preview Visualize Text Find Text Preview Visualize Preview Preview Visualize Preview Preview Visualize Preview Preview Visualize Preview Preview Visualize Preview Preview Visualize Preview Preview Visualize Preview Preview Visualize Preview</pre>	value": "Energy un f.etsi.org/core/En	it" } ergy" } ,

Figure 81: PLATOON Common Components - IDS Vocabulary Provider Validation Results

However, the integration of the PLATOON IDS vocabulary provider with the PLATOON data models is still pending as they have not been uploaded yet to a repository. ENGIE has bought a domain name, which we are currently deploying on the ENGIE's side with the different security parts. More details on PLATOON Common Data Models are explained in deliverable D8.5.

10.3 Conclusion

As a result of the validation of the PLATOON Common Components it can be concluded that most functionalities of the Metadata Registry, Clearing House, GUI, DAPS and Vocabulary provider have been successfully validated. To validate the mechanism of the AppMessageHandler of the Metadata Registry, the Data Space Connector has been modified so that user can register their Apps from the Data Analytic Toolbox. The validation of the App Store is in-progress and will be completed by M36. The new version of the Clearing House can also communicate with the TRUE Connector. Regarding the PLATOON IDS Vocabulary provider, the integration with the PLATOON data models is still pending. ENGIE has bought a domain name, which we are currently deploying on the ENGIE's side with the different security parts, so, this should be completed before the end of the project.

11. Conclusion

As a result of the final validation performed in the different pilots and the PLATOON common components, it can be concluded that most of the functionalities have been successfully validated, except some minor pending aspects as shown in the table below:

Table 37: Overall Validation Status Summary

Pilot	Status	Pending Aspects
1A	Complete	
2A	Complete	
2B	Complete	
3A	Minor pending aspects	Some tools could not be validated.
3B-PI	Complete	
3B-ROM	Complete	
3C	Complete	
4A	Complete	
Common	Minor pending aspects	Metadata registry- Test the functionality of AppMassageHandler
Components		 AppMessageHandler. Vocabulary provider - integration with the PLATOON Common Semantic Data Models for energy.

In addition, it was noted that in general, the pilots faced two main barriers to complete the validation:

- 1. Implementation of IDS connector and semantic pipeline.
 - 2. Lack of sufficient quality data for validation.

As lessons for future projects, on the one hand, the IDS connectors should be improved to facilitate the configuration processes so that even non-experts can configure them. On the other hand, it should be noted that due to the COVID situation, there have been some delays in the installation of the new sensors/systems. Nevertheless, if it had been possible for the pilots to have all the sensors and data at the beginning of the key phases of the project, this type of problem could have been avoided during the execution.

Annex I: KPI Templates

Pilot 1a Predictive Maintenance of Wind Farms

KPI N°1						
KPI-Name	Modelling quality		KPI-ID	1		
КРІ-Туре	Technical (specific to Technical	the pilot use case) or b	usiness (refe	r to D8.1/ I	PLATOON KPIs)	
Description	, ,	licted value compared lute Percentage Error (e in health	y operating conditions	
Target Value	Target value: 3%	Threshold N 5%	Threshold Value		e used to assess the eness/efficiency ance of the monitored or	
Rounding	Round to 1%	·				
Unit	Percentage error					
Formula	(Abs(predicted value	of modelled paramete	r – true value	e)/true valu	e) * 100	
Calculating frequency	Upon retraining of th	e model				
Calculation Met	hodology					
Step	Description					
01-	Predict the value of n	nodelled parameter				
02	Compare to the real value according to the formula above.					
Data Source	I					
Data description	Data source	Data collection frequency	Data collec range	tion time	Data Owner	
Signals used as input for the models	SCADA data	10 min	Data corre to training the model.		ENGIE	

KPI N°2						
KPI-Name	Integration		KPI-ID	2		
КРІ-Туре	Technical					
Description	Metric targeted at the together.	e validation of the fact	that the too	ols of this p	pilot are able to wor	
Target Value	1	Threshold \	/alue	1		
Rounding	Not applicable					
Unit	Binary 1 or 0					
Formula	If all tools to complete this KPI is 1. Otherwise	the pilot data analysis o e, it is 0.	can interact a	and send d	ata to each other tha	
Calculating	At each pipeline releas	se				
frequency						
Calculation Me	thodology					
Step	Description					
01-	based on unit tests the	e input-output function	ing of each p	ipeline is v	alidated.	
02	Test data is exchanged	Test data is exchanged between the pilot analytics blocks				
Data Source						
Data description	Data source	Data collection frequency	Data collec range	tion time	Data Owner	
Test data	Predefined set of validation data.				Each pilot part involved wit specific tools	

KPI N°3				
KPI-Name	Fault detection		KPI-ID	3
КРІ-Туре	Technical			
Description	Anomaly detection speed + accur a confusion matrix. For the spe			, , ,
Target Value	Compared to the current failure detection the speed should improve with at least 25%, while keeping false positives below 10%	Threshold Va	lue	All improvement compared to current situation is already useful.

Rounding	Not applicable for accuracy. Each element in the confusion matrix is binary. For the speed rounded to the next day.				
Unit	time				
Formula	Confusion matrix for e	each day block in time			
Calculating frequency	Once per day				
Calculation Meth	nodology				
Step	Description				
01-					
02					
Data Source					
Data description	Data source	Data collection frequency	Data collection time range	Data Owner	
E.G. energy consumption	E.g. BMS	E.g. 15 min	E.g. Monthly		

KPI N°4						
KPI-Name	Processing capability		KPI-ID	4		
КРІ-Туре	Technical					
Description	There are two aspects being tested in this KPI. The first is the speed at which one complete data analysis of the complete pipeline can be done. The second is the number of turbines that are feasible to be analysed using the approach.					
Target Value	Full processing chain for a farm should be able to run on a standard server.	Threshold Value		Full processing chain for a farm should be able to run on a standard server.		
Rounding	Rounding up of CPU and RAM to	next unit				
Unit	Nbr of s on CPU of type X with X	Gb RAM for 1 t	urbine			
Formula	Cores and Gb					
Calculating frequency	Upon changes in the pipelines					
Calculation Met	Calculation Methodology					
Step	Description					

01-				
02				
Data Source				
Data description	Data source	Data collection frequency	Data collection time range	Data Owner
Input data sources for the analytics methods	Input data sources for the analytics methods	Same as inputs for the analytics methods		

KPI N°5							
KPI-Name	Maintenance costs rec	duction		KPI-ID	5		
КРІ-Туре	Business						
Description	consequent damages estimated by compar failure. Revenues duri	The reduction in the maintenance cost of the wind turbine due to early fault detection. Less consequent damages are present and maintenance actions are clustered. Costs will be estimated by comparing cost of component replacement at detection to catastrophic failure. Revenues during additional time that the machine was able to run are subtracted from the maintenance costs.					
Target Value	10-20%		Threshold V	/alue	10%		
Rounding	Round to 0.01%						
Unit	%						
Formula	Euro maintenance cos	t with early	/ detection/E	uro maintena	ince cost r	un to failure	
Calculating frequency	yearly						
Calculation Met	hodology						
Step	Description						
01-							
02							
Data Source							
Data description	Data source	Data frequenc	collection y	Data collect range	ion time	Data Owner	

Maintenance	Maintenance	continuously	yearly	ENGIE
records	records			
containing the				
maintenance				
actions				
performed on				
the wind				
turbines under				
investigation				

KPI N°6						
KPI-Name	Availability increase			KPI-ID	6	
КРІ-Туре	Technical (specific to t	the pilot use cas	e) or bus	iness (refer	to D8.1/ F	PLATOON KPIs)
Description	The increase of the turbine availability due to faster actions triggered by better predictive maintenance. We focus on machines with an error.					d by better predictive
Target Value	2-5%	Thre	eshold Va	alue	2%	
Rounding	Round to 0.01%				1	
Unit	% of the time					
Formula	Abs(Availability as is si	ituation – Availal	oility afte	r usage of P	latoon too	olbox)
Calculating	yearly					
frequency						
Calculation Met	hodology					
Step	Description					
01-	Isolation of the availab	pility reductions l	inked to t	the subcom	ponents w	ithin focus in Platoon.
02	Comparison of the estimated availability with and without the fault detection knowledge of platoon analytics tools.					
Data Source						
Data description	Data source	Data coll frequency		Data collect range	tion time	Data Owner
Annotated stops	Maintenance records	continuously		yearly		ENGIE

Pilot 2a Electricity Balance and Predictive Maintenance

LLUC P 2a-03

KPI N°1a								
KPI-Name	Load Forecasting Mea	an Absolute Error	KPI-ID	LLUC 2a	-03 KPI 1a			
Description	This KPI is supposed models.	This KPI is supposed to provide precision performance estimation for Load Forecasting models.						
Unit	[W]							
Formula		$=\frac{1}{n}$	$\sum_{i=1}^{n} e_i $					
	where e_i is difference	e between estimated	and real load	and n is n	umber of samples for			
	which KPI is calculate	d.						
Calculating	This KPI should be eva	aluated daily or month	ly					
frequency								
Calculation Met	hodology							
Step	Description							
01-		Estimated and real load from the PLATOON platform should be obtained and KPI should be calculated according to the formula above.						
Data Source								
Data	Data source	Data collection	Data collec	tion time	Data Owner			
description		frequency	range					
Energy consumption	MySQL	hourly	daily, yearly	monthly,	IMP			

KPI N°1b			
KPI-Name	Load Forecasting Mean Absolute Percentage Error	KPI-ID	LLUC 2a-03 KPI 1b
Description	This KPI is supposed to provide precision per models, similarly to the previous one, but norr		estimation for Load Forecasting
Unit	[%]		
Formula	$= \frac{1}{n} \sum_{i=1}^{n}$ where e_i is difference between estimated and		, and n is number of samples for
	which KPI is calculated.		

Calculating	This KPI should be evaluated daily or monthly						
frequency							
Calculation Methodology							
Step	Description						
01-	Estimated and real load from the PLATOON platform should be obtained and KPI should be calculated according to the formula above.						
Data Source							
Data	Data source	Data	collection	Data coll	ection time	Data Owner	
description		frequency		range			
Energy	MySQL	hourly		daily,	monthly,	IMP	
consumption				yearly			

KPI N°2a							
KPI-Name	Load Forecasting Roo	t Mean Square Error	KPI-ID	LLUC 2a	-03 KPI 2a		
Description	This KPI is supposed to provide precision performance estimation for Load Forecasting models.						
Unit	[W]						
Formula	$= \sqrt{\frac{1}{n}\sum_{i=1}^{n}e_i^2}$						
	where e_i is difference between estimated and real load, and n is number of samples for which KPI is calculated.						
Calculating	This KPI should be evaluated daily or monthly						
frequency							
Calculation Met	hodology						
Step	Description						
01-	Estimated and real load from the PLATOON platform should be obtained and KPI should be calculated according to the formula above.						
Data Source							
Data	Data source	Data collection	Data colled	ction time	Data Owner		
description		frequency	range				
Energy consumption	MySQL	hourly	daily, yearly	monthly,	IMP		

KPI N°2b						
KPI-Name	Load Forecasting Root Mean Square Error Percentage	KPI-ID	LLUC 2a-03 KPI 2b			
Description	This KPI is supposed to provide precision performance estimation for Load Forecasting models, similarly to the previous one, but normalized.					
Unit	[%]					
Formula	$= \frac{\sqrt{\frac{1}{n}\sum_{i=1}^{n} e_i^2}}{\frac{\sum_{i=1}^{n} d_i}{n}}$ where e_i is difference between estimated and real load (d_i) , and n is number of samples					
	for which KPI is calculated.					
Calculating frequency	This KPI should be evaluated daily or monthly					

Calculation Methodology					
Step	Description				
01-	Estimated and real loa calculated according	•	latform should be obtain	ned and KPI should be	
Data Source					
Data description	Data source	Data collection frequency	Data collection time range	Data Owner	
Energy consumption	MySQL	hourly	daily, monthly, yearly	IMP	

LLUC P 2a-04

KPI N°1a							
KPI-Name	Production Forecastir	ng Mean Absolute Error	KPI-ID	LLUC 2a	-04 KPI 1a		
Description	This KPI is supposed to provide precision performance estimation for Production Forecasting models.						
Unit	[W]						
Formula		$=\frac{1}{n}\sum_{i=1}^{n} e_{i} $					
	where e_i is difference	e between estimated an	d real product	ion and n	is number of samples		
	for which KPI is calcul	for which KPI is calculated.					
Calculating	This KPI should be eva	aluated daily or monthly	1				
frequency							
Calculation Me	thodology						
Step	Description						
01-	Estimated and real production from the PLATOON platform should be obtained and KPI should be calculated according to the formula above.						
Data Source							
Data	Data source	Data collection	Data collect	ion time	Data Owner		
description		frequency	range				
Energy	MySQL	hourly	daily, ı	monthly,	IMP		
production			yearly				

KPI N°1b						
KPI-Name	Production Forecas Percentage Error	ting Mean A	bsolute	KPI-ID	LLUC 2a	-04 KPI 1b
Description	This KPI is suppose Forecasting models, s	• •		•		ation for Production
Unit	[%]					
Formula	$= \frac{1}{n} \sum_{i=1}^{n} \frac{ e_i }{p_i}$ where e_i is difference between estimated and real production p_i , and n is num					. and n is number of
	samples for which KPI is calculated.					
Calculating	This KPI should be eva	This KPI should be evaluated daily or monthly				
frequency						
Calculation Met	hodology					
Step	Description					
01-	-	Estimated and real production from the PLATOON platform should be obtained and KPl should be calculated according to the formula above.				
Data Source	·					
Data description	Data source	Data colle frequency		Data collect range	ion time	Data Owner
Energy consumption	MySQL	hourly		daily, yearly	monthly,	IMP

KPI N°2a	
KPI-Name	Production Forecasting Root Mean Square KPI-ID LLUC 2a-04 KPI 2a
	Error
Description	This KPI is supposed to provide precision performance estimation for Production
	Forecasting models.
Unit	[W]
Formula	$= \sqrt{\frac{1}{n}\sum_{i=1}^{n}e_i^2}$
	where e_i is difference between estimated and real production, and n is number of samples
	for which KPI is calculated.

Calculating	This KPI should be eva	This KPI should be evaluated daily or monthly						
frequency								
Calculation Methodology								
Step	Description							
01-		Estimated and real production from the PLATOON platform should be obtained and KPI should be calculated according to the formula above.						
Data Source								
Data	Data source	Data collection	Data collection time	Data Owner				
description		frequency range						
Energy consumption	MySQL	hourly	daily, monthly, yearly	IMP				

KPI N°2b							
KPI-Name	Production Forecasti Error Percentage	ng Root Mean Square	KPI-ID	LLUC 2a	-04 KPI 2b		
Description		This KPI is supposed to provide precision performance estimation for Production Forecasting models, similarly to the previous one, but normalized.					
Unit	[%]						
Formula	where e_i is differenc samples for which KP	$= \frac{\sqrt{\frac{1}{n}\sum_{i=1}^{n}e_i^2}}{\frac{\sum_{i=1}^{n}p_i}{n}}$ where e_i is difference between estimated and real production (p_i) , and n is number of samples for which KPL is calculated					
Calculating frequency	This KPI should be eva	aluated daily or monthly					
Calculation Met	thodology						
Step	Description						
01-	•	Estimated and real production from the PLATOON platform should be obtained and KPI should be calculated according to the formula above.					
Data Source							
Data description	Data source	Data collection frequency	Data collec range	tion time	Data Owner		
Energy consumption	MySQL	hourly	daily, yearly	monthly,	IMP		

LLUC P 2a-05

Increase in PV inser	tion capacity	KPI-ID	KPI-8			
Estimate how many PVs can be integrated into LV grid (and where) before a grid limitation is reached (e.g., overvoltage limit). Increase is compared to actual installed PV capacity on						
%						
$\frac{P_{max}(Vmax)}{P_{installedPV}} * 100\%$	$\frac{P_{max}(Vmax)}{P_{installedPV}} * 100\% V_{max} \text{ according to EN-50160}$					
Once per installatio	n or daily					
thodology						
Description						
Obtain the maximal	daily grid voltage from P	MU				
For certain period Voltage.	and for estimated worst	case scenari	o conditio	on estimate max grid		
Calculate the capacity						
Data source Data collection frequency Data collection time range Data Owner						
EMS / PMU	50 Hz	months				
	Estimate how many is reached (e.g., over LV grid. % $\frac{P_{max}(Vmax)}{P_{installedPV}} * 100\%$ Once per installation thodology Description Obtain the maximal For certain period Voltage. Calculate the capace	is reached (e.g., overvoltage limit). Increase is LV grid. % $\frac{P_{max}(Vmax)}{P_{installedPV}} * 100\% V_{max} according to EN-50$ Once per installation or daily thodology Description Obtain the maximal daily grid voltage from Pl For certain period and for estimated worst Voltage. Calculate the capacity Data source Data collection frequency	Estimate how many PVs can be integrated into LV grid (and is reached (e.g., overvoltage limit). Increase is compared to LV grid. % $\frac{P_{max}(Vmax)}{P_{installedPV}} * 100\% V_{max}$ according to EN-50160 Once per installation or daily thodology Description Obtain the maximal daily grid voltage from PMU For certain period and for estimated worst case scenari Voltage. Calculate the capacity Data source Data collection frequency	Estimate how many PVs can be integrated into LV grid (and where) be is reached (e.g., overvoltage limit). Increase is compared to actual in LV grid. % $\frac{P_{max}(Vmax)}{P_{installedPV}} * 100\% V_{max}$ according to EN-50160 Once per installation or daily thodology Description Obtain the maximal daily grid voltage from PMU For certain period and for estimated worst case scenario condition Voltage. Calculate the capacity Data source Data collection frequency		

LLUC P 2a-07

KPI N°1						
KPI-Name	Saving costs	KPI-ID	KPI-8			
Description	Algorithms detects abnormal behaviour and predicts the degreation constant. Reduces maintainance costs. It also detects failures.					
Unit	€					

Farmerila	1 Dimensi 0.1						
Formula	1. Binary 0 1	6 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11					
		failure, immediate repl					
	$(N_{daysestimate} - N_{daysafterdetectingfailure}) * E_{daily} * price_{ofelectricity}$						
	Prediction of	failure					
	Reduction of Asset Inv	vestment costs by minir	nizing the number of ele	ements to be replaced			
	(PV modules).						
	$\left(\sum_{i=0}^{N_{total}} i - \sum_{i=0}^{N_{string}} i\right) * cost_of_module$						
Calculating	daily						
frequency							
Calculation Meth	odology						
Step	Description						
01-	Obtain correction fact	or for PV from the serv	ice				
02	Obtain historical degr	adation parameter fron	n the service				
03	Check the values for F	PV plant/string or invert	er level				
	Check the values for PV plant/string or inverter level						
04	Compared to the predefined threshold (eg. 75% for module efficiency), 0 or 1 for the inverters						
Data Source							
Data	Data source	Data collection	Data collection time	Data Owner			
description		frequency	range				
E.G., energy consumption	E.g., EMS	daily	daily				

Pilot 2b Electricity Grid Stability, Connectivity and Life cycle

LLUC P 2b-01

KPI N°1							
KPI-Name	Temper	ature estimation	on accuracy (%)	KPI-ID	01	
Description	-	Hourly temperature accuracy estimation based on estimated temperature (ET) and actual (measured) temperature (AT) for top oil.					
Target Value	e 5% Threshold Value 10%				%		
Unit	None	·					
Formula	(Estima	ted Temperatu	re-Actual Te	mperature),	/ Actual Ten	nperature	(%)
Calculating frequency	Hourly	Hourly					
Calculation Met	hodology						
Step	Descrip	tion					
01-	Model t	he top oil tem	perature usir	ng machine	learning/de	ep learning	g.
02	Compar sensor.	Compare the prediction obtained using our model with the real values obtained from the sensor.					ues obtained from the
Data Source	•						
Data description	Data so	Data source Data collection Data collection time Data Owner frequency range range range range					Data Owner
Transformer Temperature and load	Transfo Temper sensors S02		15 min		unknown		SAMPOL

KPI N°2					
KPI-Name	True positives (TP)	KPI-ID	02		
Description	Number of anomalies detected with early warnings and confirmed with a corrective work order				
Unit	None				

Formula					
Calculating	Hourly				
frequency					
Calculation Met	hodology				
Step	Description				
01-	Obtain the warnings of needed corrective order given by the model.				
02	Calculate the number	of corrective orders tha	t are predicted and app	lied.	
Data Source					
Data	Data source	Data collection	Data collection time	Data Owner	
description		frequency	range		
Transformer	Transformer	15 min	unknown	SAMPOL	
Temperature	Temperature				
and load	sensors database				
	S02				

KPI N°3						
KPI-Name	False positives (FP)	False positives (FP)KPI-ID03				
Description	Early warnings with no	associated corrective v	vork order			
Unit	None					
Formula						
Calculating frequency	Hourly	Hourly				
Calculation Met	hodology					
Step	Description					
01-	Obtain the warnings o	f needed corrective ord	er given by the m	odel.		
02	Calculate the number	of corrective orders tha	t are predicted bu	ıt not applied.		
Data Source						
Data	Data source	Data collection	Data collection	time Data Owner		
description		frequency	range			
Transformer	Transformer	15 min	unknown	SAMPOL		
Temperature	Temperature					
and load	sensors database					
	S02					

KPI N°4							
KPI-Name	False negatives (FN)		KPI-ID	04			
Description	Corrective work order	Corrective work order without a previous early warning.					
Unit	None	None					
Formula							
Calculating frequency	Hourly	Hourly					
Calculation Me	thodology						
Step	Description						
01-	Obtain the warnings o	f needed corrective	order given by t	he model.			
02	Calculate the number	of corrective orders	that are not pre	dicted and	applied.		
Data Source							
Data description	Data source	Data collecti frequency	on Data collec range	tion time	Data Owner		
Transformer Temperature and load	Transformer Temperature sensors database S02	15 min	unknown		SAMPOL		

KPI N°5				
KPI-Name	True Negatives (TN) KPI-ID 05			
Description	No early warning and no work order			
Unit	None			
Formula				
Calculating frequency	Hourly			

Calculation Met	Calculation Methodology					
Step	Description	Description				
01-	Obtain the warnings of	Obtain the warnings of needed corrective order given by the model.				
02	Calculate the number	Calculate the number of corrective orders that are not predicted and not applied.				
Data Source						
Data	Data source	Data collection	Data collection time	Data Owner		
description		frequency	range			
Transformer	Transformer	15 min	unknown	SAMPOL		
Temperature	Temperature					
and load	sensors database					
	S02					

KPI N°6						
KPI-Name	Specificity (%)	Specificity (%)			06	
Description	Proportion of true neg	gatives relati	ve to all neg	gative cases.	1	
Unit						
Formula	(TN/(TN+FP))	TN/(TN+FP))				
Calculating	Hourly					
frequency						
Calculation Met	hodology					
Step	Description	Description				
01-	Obtain the proportio correctly identified.	Obtain the proportion of transformers that does not need a corrective order that are correctly identified.				ective order that are
Data Source						
Data	Data source	Data	collection	Data collecti	on time	Data Owner
description		frequency		range		
Transformer	Transformer	15 min		unknown		SAMPOL
Temperature	Temperature					
and load	sensors database S02					

KPI N°7			
KPI-Name	Sensitivity (%)	KPI-ID	07

Description	Proportion of actua	Proportion of actual needed corrective order correctly identified				
Unit	None					
Formula	(TP/(TP+FN))	(TP/(TP+FN))				
Calculating frequency	Hourly	Hourly				
Calculation Me	ethodology					
Step	Description					
01-	Obtain the proportion of transformers that need a corrective order that are correctly identified.					
Data Source						
Data description	Data source	Data frequer	collection icy	Data time ra	collection inge	Data Owner
Transformer	Transformer	15 min		unknov	wn	SAMPOL
Temperature	Temperature					
and load	sensors database S02					

KPI N°8					
KPI-Name	Cohen's Kappa (%)	Cohen's Kappa (%) KPI-ID 08			
Description	Measurement of matches in the predictive tool discounting the probability of randomly matching				
Unit	None				
Formula	$K = \frac{p_0 - p_e}{1 - p_e}, \text{where} p_0 = \frac{TP + TN}{TP + TN + FP + FN} \text{and} p_e = p_{Yes} + p_{No} = \frac{TP + FN}{TP + TN + FP + FN} + \frac{FP + TN}{TP + TN + FP + FN} \frac{FN + TN}{TP + TN + FP + FN}$				
Calculating frequency	Hourly				
Calculation Met	nodology				
Step	Description				
01-	Calculate the TP,TN,FP,FN.				
02	Apply the formula to obtain the needed correct	ive orders	not well predicted randomly.		

Data Source				
Data	Data source	Data collection	Data collection time	Data Owner
description		frequency	range	
Transformer	Transformer	15 min	unknown	SAMPOL
Temperature	Temperature			
and load	sensors database			
	S02			

KPI N°9						
KPI-Name	Savings (€)		KPI-ID	09		
Description		Cumulative measurement of savings associated to True Positives considering: a) Avoided breakdown consequences + b) Downtime cost				
Unit	€	€				
Formula						
Calculating frequency	Hourly	Hourly				
Calculation Met	hodology					
Step	Description	Description				
01-		Calculate the breakdown caused by the failure that has been predicted and corrected and the downtime that it should have caused.				
02	Obtain the monetary caused.	Obtain the monetary compensation that this downtime and breakdown should have caused.				
Data Source						
Data description	Data source	Data collection frequency	Data collect range	tion time	Data Owner	
Transformer Temperature and load	Transformer Temperature sensors database S02	15 min	unknown		SAMPOL	

KPI N°10			
KPI-Name	Additional Costs (€)	KPI-ID	10
Description	Increased costs due to maintenance activities associated to False Positives. They should be subtracted from Savings to get the net value.		
Unit	€		

Formula					
Calculating	Hourly				
frequency					
Calculation Meth	Calculation Methodology				
Step	Description				
01-	Obtain the cost of maintenance caused due to false positives.				
Data Source					
Data	Data source	Data collection	Data collection time	Data Owner	
description		frequency	range		
Transformer	Transformer	15 min	unknown	SAMPOL	
Temperature	Temperature				
and load	sensors database				
	S02				

KPI N°11						
KPI-Name	Anticipation time (da	ys)	KPI-ID	11		
Description	For each True Positive the time of failure.	For each True Positive it represents the delta Time between the moment of detection and the time of failure.				
Unit	Seconds Minutes Da	Seconds Minutes Days				
Formula						
Calculating frequency	Hourly	Hourly				
Calculation Me	thodology					
Step	Description	Description				
01-		Predict the failure dates of the transformers and obtain the difference between the predicted date and the real failure dates.				
Data Source						
Data	Data source	Data collection	Data collecti	on time Da	ata Owner	
description		frequency	range			
Transformer	Transformer	15 min	unknown	SA	AMPOL	
Temperature	Temperature					
and load	sensors database					
	S02					

KP	N°12

KPI-Name	Risk decrease (€)		KPI-ID	12			
Description	•	Risk decrease comparing risk-based maintenance supported by the tool to the ordinary preventive maintenance (equal maintenance expenditure is assumed in both cases)					
Unit	€	€					
Formula							
Calculating	Hourly						
frequency							
Calculation Me	thodology						
Step	Description	Description					
01-	Calculate the ordinar of maintenance.	Calculate the ordinary risk of failure and predicted risk of failure. Multiply this by the cost of maintenance.					
02	Obtain the difference strategy.	Obtain the difference between the cost * risk between the tool and the actual maintenance strategy.					
Data Source							
Data description	Data source	Data collection frequency	Data collecti range	ion time	Data Owner		
Transformer	Transformer	15 min	unknown		SAMPOL		
Temperature	Temperature						
and load	sensors database S02						

KPI N°13						
KPI-Name	Maintenance cost savings (€)	KPI-ID	13			
Description	Maintenance cost savings comparing risk-based maintenance supported by the tool to the ordinary preventive maintenance (equal risk level is assumed in both cases)					
Unit	€					
Formula						
Calculating frequency	Hourly					
Calculation Met	hodology					
Step	Description					
01-	Calculate the costs of ordinary maintenance	e and predicted	d maintenance.			

02	Obtain the difference between predicted maintenance cost and ordinary maintenance cost.			
Data Source				
Data	Data source	Data collection	Data collection time	Data Owner
description		frequency	range	
Transformer	Transformer	15 min	unknown	SAMPOL
Temperature	Temperature			
and load	sensors database			
	S02			

KPI N°14						
KPI-Name	Useful Life Extension (years)	KPI-ID	14		
Description	Based on the estimation of the RUL (Remaining Useful Time) it indicates the achievable extension of life relative to that indicated by the manufacturer					
Unit	Years/months					
Formula	Previous RUL- loss of li	Previous RUL- loss of life since last RUL calculation				
Calculating frequency	Daily	Daily				
Calculation Met	hodology					
Step	Description					
01-	Apply the standards to	obtain the HST from	the TOT			
02	Apply the standards to calculate the useful life decreasement from the TOT.					
Data Source	•					
Data	Data source	Data collection	Data collect	tion time	Data Owner	
description		frequency	range			
Transformer	Transformer	15 min	unknown		SAMPOL	
Temperature	Temperature					
and load	sensors database S02					

KPI N°15			
KPI-Name	Mean Average Percentage Error	KPI-ID	15

Description	Accuracy of the predicted value compared to real value in healthy operating conditions					
-		using the Mean Absolute Percentage Error (MAPE).				
Target Value	Target value:	Threshold	Value The value	ue used to assess the		
U	0%	5%	effective	eness/efficiency		
			perform	ance of the monitored		
			process.			
			RMS erro	or		
Formula	(Abs(predicted value of modelled parameter – true value)/true value) * 100					
Calculating	Each data set					
frequency						
Calculation Methodology						
Step	Description					
01-	Predict the value of modelled parameter					
02	Compare to the real	al value according to	o the formula above.			
		0				
Data Source						
Data	Data source	Data collection	Data collection time	Data Owner		
description		frequency	range			
Signals used	SAMPOL online	10 min	Data corresponding to	SAMPOL		
as input for	data		training range for the			
the models			model.			

KPI N°16				
KPI-Name	Mean Average Percentage I	Error	KPI-ID	16
Description	Accuracy of the predicted value compared to real value in healthy operating conditions using the Mean Absolute Percentage Error (MAPE).			
Target Value	Target value: 0%	Threshold Va		The value used to assess the effectiveness/efficiency performance of the monitored process. RMS error
Formula	(Sum of N samples((Abs(p value) * 100)/N	oredicted value	e of modelle	d parameter – true value)/true
Calculating frequency	Each data set			
Calculation Me	Calculation Methodology			

Step	Description				
01-	Predict the value of modelled parameter				
02	Compare to the real value according to the formula above.				
Data Source					
Data description	Data source	Data collection frequency	Data collection time range	Data Owner	
Signals used as input for the models	SAMPOL online data	10 min	Data corresponding to training range for the model.	SAMPOL	

KPI N°17					
KPI-Name	Mean Error		KPI-ID	17	
Description		edicted value compa osolute Percentage			ny operating conditions
Target Value	Target value: 0	Threshold 5% of act		effectiver	e used to assess the ness/efficiency nce of the monitored
Unit	Percentage error				
Formula	(Sum of N samples(predicted value of modelled parameter – true value))/N				
Calculating frequency	Each data set				
Calculation Me	thodology				
Step	Description				
01-	Predict the value of modelled parameter				
02	Compare to the real value according to the formula above.				
Data Source	Data Source				
Data description	Data source	Data collection frequency	Data colle range	ction time	Data Owner

Signals used	SAMPOL online	10 min	Data corresponding to	SAMPOL
as input for	data		training range for the	
the models			model.	

KPI N°18						
KPI-Name	Mean Absolute Er	ror	KPI-ID	18		
Description		edicted value compa osolute Percentage E		lue in health	y operating conditions	
Target Value	Target value: 0	Threshold 5% of act		effectiver	e used to assess the ness/efficiency nce of the monitored	
Formula	(Sum of N samples	(Abss(predicted val	ue of modelle	d parametei	r – true value)))/N	
Calculating frequency	Each data set					
Calculation Me	thodology					
Step	Description					
01-	Predict the value of	Predict the value of modelled parameter				
02	Compare to the real value according to the formula above.					
Data Source						
Data description	Data source	Data collection frequency	Data collec range	tion time	Data Owner	
Signals used as input for the models	SAMPOL online data	10 min	Data corresp training ran model.	-	SAMPOL	

KPI N°19					
KPI-Name	Mean Squared Error	KPI-ID	19		
Description	Accuracy of the predicted value compared to real value in healthy operating conditions using the Mean Absolute Percentage Error (MAPE).				

Target Value	Target value: 0	Threshold 5% of actu	ual value effective	e used to assess the ness/efficiency ance of the monitored or					
Formula	(Sum of N samples	((predicted value o	f modelled parameter – 1	rue value)^2))/N					
Calculating frequency	Each data set	Each data set							
Calculation Met	thodology								
Step	Description								
01-	Predict the value of	of modelled paramet	er						
02	Compare to the re	al value according to	o the formula above.						
Data Source									
Data description	Data source	Data collection frequency	Data collection time range	Data Owner					
Signals used as input for the models	SAMPOL online data	10 min	Data corresponding to training range for the model.						

KPI N°20				
KPI-Name	Root Mean Squared Error		KPI-ID	20
Description		•		e in healthy operating conditions
	using the Mean Absolute P	ercentage Errc	or (MAPE).	
Target Value	Target value: 0	Threshold Va 5% of actual		The value used to assess the effectiveness/efficiency
	0	570 OF actual		performance of the monitored
				process.
				RMS error
Formula	((Sum of N samples((predie	cted value of n	nodelled para	meter – true value)^2))/N)^0.5
Calculating	Each data set			
frequency				
Calculation Me	thodology			
Step	Description			

01-	Predict the value of modelled parameter							
02	Compare to the real value according to the formula above.							
Data Source								
Data	Data source	Data collection	Data collection time	Data Owner				
description		frequency	range					
Signals used	SAMPOL online	10 min	Data corresponding to	SAMPOL				
as input for	data		training range for the					
the models			model.					

KPI N°21						
KPI-Name	Correlation Coefficier	nt R2	KPI-ID	21		
Description		licted value compared lute Percentage Error (e in health	y operating conditions	
Target Value	Target value:		Threshold Value		The value used to assess the effectiveness/efficiency performance of the monitored process. RMS error	
Formula		e(predicted value of redicted value X Estima	-		true value)/(Estimated true value)	
Calculating frequency	Each data set					
Calculation Met	hodology					
Step	Description					
01-	Predict the value of m	nodelled parameter				
02	Compare to the real v	value according to the t	formula abov	/e.		
Data Source						
Data description	Data source	Data collection frequency	Data colleo range	ction time	Data Owner	
Signals used as input for the models	SAMPOL online data	10 min	Data correto to training the model.	range for	SAMPOL	

LLUC P 2b-02

KPI N°1								
KPI-Name	Global L	osses Energy	Percentage		KPI-ID	NTL-KPI	-01	
Description		Percentage of the energy that is provided from a MV substation or LV CT that is not settle to any consumer and is therefore lost. To be averaged in long periods (at least months).						
Target Value 30% Threshold Val			bld Value 359		%			
Unit	None			-				
Formula	NTL-KPI	-01 = NTL-KPI	-02 + NTL-KP	1-03				
Calculating frequency	Hourly/I	Daily						
Calculation Meth	odology							
Step	Descript	tion						
01-	Calculat	e the total co	nsumption of	all custome	ers.			
02		e the percent ransformer.	age of the cus	stomers co	nsumptions	over the e	nergy provided by the	
Data Source								
Data description	Data so	urce	Data c frequency	ollection	Data collect range	tion time	Data Owner	
Data obtained from the Parc Bit distribution Grid	S02		1 hour		2016-10-19 00:00:00, 202 04:00:00,	20-10-16	SAMPOL	

KPI N°2						
KPI-Name	NTL Ene	rgy Percentage		KPI-ID	NTL	-KPI-02
Description	Percenta NTL	Percentage of the energy that is provided from a MV substation or LV CT that is lost due to NTL				
Target Value	Target Value 15% Threshold Va		d Value		20%	
Unit	None					

Formula	NTL-KPI-02 = NTL-KPI	NTL-KPI-02 = NTL-KPI-04 + NTL-KPI-05							
Calculating	Hourly/Daily								
frequency									
Calculation Meth	Calculation Methodology								
Step	Description								
01-	Calculate the NTL cau	sed by consumers and r	non-consumers.						
02									
Data Source									
Data	Data source	Data collection	Data collection time	Data Owner					
description		frequency	range						
Data obtained	S02	1 hour	2016-10-19	SAMPOL					
from the Parc			00:00:00,						
Bit distribution			2020-10-16						
Grid			04:00:00,						

KPI N°3								
KPI-Name	TL Energy Percentage			KPI-ID	NTL-KPI-03			
Description	Percentage of the energy that is provided from a MV substation or LV CT that is lost due to TL							
Target Value		10%	Threshol	15%				
Unit	None							
Formula	None							
Calculating	Hourly/	Daily						
frequency								
Calculation Met	hodology							
Step	Descript	tion						
01-	Obtain the characteristics of the distribution grid.							
02	Calculate the expected technical loses.							
Data Source								

Data description	Data source	Data frequency	collection	Data collection time range		Data Owner
Data obtained	S02	1 hour		2016-10-19	00:00:00,	SAMPOL
from the Parc				2020-10-16		
Bit distribution				04:00:00,		
Grid						

KPI N°4							
KPI-Name	Custom	er NTL Energy Pe	ercentage		KPI-ID	NTI	KPI-04
Description	fraud ex	xecuted by custo	omers. This	portion of	NTL is more	e likel	or LV CT that is lost due to y to be avoided after it is oint contractors.
Target Value		10%		Threshold	Value		15%
Unit	None						
Formula	None						
Calculating frequency	Hourly/I	Daily					
Calculation Meth	odology						
Step	Descript	tion					
01-	Subtract	t the technical lo	ses to the t	otal loses.			
02	Obtain t	he part of the re	esult that ca	n be impute	ed to custon	ners.	
Data Source							
Data description	Data source	Data frequency	collection	Data co range	llection t	time	Data Owner
Data obtained from the Parc Bit distribution Grid	S02	1 hour		2016-10-1 20 04:00:00,	9 00:00 020-10-16):00,	SAMPOL

KPI N°5							
KPI-Name	Non-Cust	Non-Customer NTL Energy Percentage KPI-ID NTL-KPI-05					
Description	fraud ex	Percentage of the energy that is provided from a MV substation or LV CT that is lost due to fraud executed by non-customers. This energy is stolen by non-permitted connections to the grid, which are difficult to be located physically.					
Target Value	10% Threshold Value 15%						
Unit	None						
Formula	None						
Calculating frequency	Hourly/Daily						
Calculation Met	hodology						

Step	Description							
01-	Subtract the technical loses to the total loses.							
02	Obtain the part of the	result that can not be i	mputed to customers.					
Data Source								
Data description	Data source	Data collection frequency	Data collection time range	Data Owner				
Data obtained from the Parc Bit distribution Grid	S02	1 hour	2016-10-19 00:00:00,2020-10- 16 04:00:00,	SAMPOL				

 Γ			
Г			

KPI N°6								
KPI-Name	True positives (TP)				KPI-ID	NTL-KP	1-06	
Description		Number of customers identified as fraud authors in the NTL identification scenario whi are verified to be committing fraud						
Target Value	7.45%Threshold Value3.66%						56%	
Unit	None	-						
Formula	None							
Calculating frequency	Hourly/	Hourly/Daily						
Calculation Meth	nodology							
Step	Descrip	tion						
01-		the customers e really causin		ausing NTI	using the d	eveloped	models and identify if	
02	Calculat NTL.	e the number	of customers	that are pr	edicted as ca	using NTI	and are really causing	
Data Source	•							
Data description	Data source Data collection Data collection time Data Owner frequency range range range range					Data Owner		
Data obtained from the Parc Bit distribution Grid	S02		1 hour		2016-10-19 00:00:00,20 16 04:00:00,		SAMPOL	

KPI N°7							
KPI-Name	False positives (FP)KP			KPI-ID	NTL-K	PI-07	
Description		Number of customers identified as fraud authors in the NTL identification scen which are not committing fraud, as result of a verification action					
Target Value	8.96% Threshold Value 11.44%						1.44%
Unit	None						
Formula	None						
Calculating frequency	Hourly,	Hourly/Daily					
Calculation Met	hodolog	У					
Step	Descrip	otion					
01-			ners that can really causing		ng NTL using	g the dev	veloped models and
02	Calcula causing		ber of custon	ners that a	re predicted	d as caus	ing NTL and are not
Data Source							
Data description	Data so	ource	Data co frequency		Data collecti range	on time	Data Owner
Data obtained from the Parc	S02		1 hour	(2016-10-19 00:00:00,203 16 04:00:00,		SAMPOL

Bit distribution		
Grid		

KPI N°8							
KPI-Name	False negatives (FN)				KPI-ID	NTL-KI	21-08
Description		Number of customers which are not identified as fraud authors in the identification scenario but are really committing fraud					
Target Value		2.29% Threshold Value 4.57%					
Unit	None						
Formula	None						
Calculating frequency	Hourly,	Hourly/Daily					
Calculation Met	hodolog	y					
Step	Descrip	otion					
01-			ers that can really causing		g NTL using	the dev	eloped models and
02		te the numl ausing NTL.	per of custon	ners that a	re predicted	as not o	causing NTL and are
Data Source							
Data description	Data so	ource	Data co frequency		Data collectic range	on time	Data Owner
Data obtained from the Parc Bit distribution Grid	S02		1 hour	C	2016-10-19 00:00:00,202 16 04:00:00,	0-10-	SAMPOL

KPI N°9			
KPI-Name	True negatives (TN)	KPI-ID	NTL-KPI-09

Description		Number of customers which are not identified as fraud authors in the NTL identification scenario, and are not really committing fraud.						
Target Value		81.3%		Thresho	ld Value	73.19%		
Unit	None							
Formula	None							
Calculating frequency	Hourly/	Hourly/Daily						
Calculation Meth	odology							
Step	Descrip	tion						
01-		the customers e really causing		causing N	TL using the develo	ped models and identify if		
02	Calculat causing		of customers	that are p	predicted as not cau	sing NTL and are really not		
Data Source								
Data description	Data so	Data source Data collection Data collection time Data Owner frequency range						
Data obtained from the Parc Bit distribution Grid	S02		1 hour		2016-10-19 00:00:00,2020-10- 04:00:00,	SAMPOL		

KPI N°10									
KPI-Name	Specificit	ty (%)		KPI-ID	NTL	-KPI-10			
Description	Proportion of true negatives relative to all negative cases.								
Target Value	ue 70% Threshold Value 45%					45%			
Unit	None								
Formula	(TN/(TN+FP))								
Calculating frequency	Hourly/D	Hourly/Daily							

Calculation Met	Calculation Methodology				
Step	Description				
01-	Obtain the proportion of negative cases of NTL that are correctly identified.				
02					
Data Source					
Data description	Data source	Data collection frequency	Data collection time range	Data Owner	
Data obtained from the Parc Bit distribution Grid	S02	1 hour	2016-10-19 00:00:00,2020-10-16 04:00:00,	SAMPOL	

KPI N°11							
KPI-Name	Sensitivity (%)			KPI-ID	NTL-K	PI-11	
Description	Proportion of actual positives cases of NTL correctly identified.						
Target Value		52%	Threshold Value 40			0%	
Unit	None						
Formula	(ТР/(ТР	(TP/(TP+FN))					
Calculating frequency	Hourly/Daily						
Calculation Met	hodolog	y					
Step	Descrip	otion					
01-	Obtain	Obtain the proportion of positives that are correctly identified.					
02							
Data Source							
Data description	Data so	ource	Data co frequency	llection	Data collecti range	on time	Data Owner

Data obtained	S02	1 hour	2016-10-19	SAMPOL
from the Parc			00:00:00,2020-10-	
Bit distribution			16 04:00:00,	
Grid				

KPI N°12							
KPI-Name	Cohen's	Kappa (%)			KPI-ID	NTL-KPI	-12
Description		Measurement of matches in the NTL identification scenario discounting the probability of randomly matching.					
Target Value		45%		Thresho	ld Value	409	%
Unit	None	1				1	
Formula	, where	and					
Calculating frequency	Hourly/Daily						
Calculation Meth	nodology						
Step	Descrip	tion					
01-	Calculat	Calculate the TP,TN,FP,FN.					
02	Apply the formula to obtain the NTL identifications not well predicted randomly.						
Data Source							
Data description	Data so	urce	Data co frequency		Data collec range	tion time	Data Owner
Data obtained from the Parc Bit distribution Grid	S02		1 hour		2016-10-19 00:00:00,20 16 04:00:00)20-10-	SAMPOL

KPI N°13			
KPI-Name	Economic Savings	KPI-ID	NTL-KPI-13

Description	Economic savings due to detected non-technical losses.					
Unit	None					
Formula	None					
Calculating frequency	Hourly/Daily					
Calculation Met	nodology					
Step	Description					
01-	Obtain the costs of e	nergy production and im	npute the percentage of	NTL to this costs.		
02						
Data Source						
Data	Data source	Data collection	Data collection time	Data Owner		
description		frequency	range			
Data obtained from the Parc Bit distribution	S02	1 hour	2016-10-19 00:00:00, 2020-10-16	SAMPOL		

Pilot # 3a Office building: operation performance thanks to physical models and IA algorithms

LLUC P-3a-01

KPI N°1					
KPI-Name	Deviation to target comfort durin time	ng occupancy	KPI-ID	KPI-1	
КРІ-Туре	Technical/Business				
Description	The thermal comfort in the building is evaluated thanks to air temperature. During occupancy time, the objective is to be within the range of comfort defined by the building manager. The deviations to this range will be monitored during occupancy periods.				
Target Value	0.5°C to comfort range	Threshold Va	lue	2°C to comfort range	

Rounding	Rounding to 0.01				
Unit	°C				
Formula	During occupancy periods : $\sum_{t=0}^{nb_{timestep}} \sum_{p=0}^{nb_{point}} \frac{error(T(t,p), Target_{range}) * w(p)}{nb_{timestep} * nb_{point} * \sum_{p=0}^{nb_{point}} w(p)}$ T(t,p): temperature of the point p at the timestep t (during occupancy period) w(p) : weight of the point p (if any, default 0) Target_range : Interval of room temperature defined by the building manager that is considered as "acceptable". Typically : [20°C-25°C] nb_timestep : number of regular timestep (hourly or less) in the period analyzed. nb_point : number of temperature sensor points				
Calculating frequency	According to need : da	ily, weekly, monthly			
Calculation Meth	nodology				
Step	Description				
01	Choice of a period, or o	calculation for default p	periods (days, weeks, m	onths, years)	
02	For the given period periods for the differer	• •	onth, year), identificati building.	on of the occupancy	
03	Request of the temper application of the form		occupancy periods of th	ne different zones and	
Data Source					
Data description	Data source	Data collection frequency	Data collection time range	Data Owner	
Occupancy in the different zones	ENGIE IT – data occupancy	15 min	Ongoing in real time	ENGIE	
Temperature in the different zones	BMS	15 min ?	Ongoing in real time	ENGIE	
Config pilot	config	-	-	ENGIE	

KPI N°2			
KPI-Name	Unnecessary HVAC heating emission	KPI-ID	KPI-2

КРІ-Туре	Technical/Business					
Description	 Evaluate the amount of energy emission (heating or cooling) that could be considered as unnecessary regarding the actual building occupancy, especially when : Preheating or precooling time over-anticipation Heating/cooling but no one present for the rest of the day. The percentage of valve opening, attributed to a specific weight will be considered as the measure of the unnecessary heating or cooling emission. 					
Target Value	<10%	r	۲hreshold ۱	/alue	30%	
Rounding	Rounding to 0.1%					
Unit	%					
Formula	$\sum_{v=0}^{nb_{nb_valve}} \sum_{t \in [unecessary heating]} Op_h(v,t) * P_{max,h}(v)$ $\sum_{v=0}^{nb_{nb_valve}} \sum_{t \in [whole period]} Op_h(v,t) * P_{max,h}(v)$ With : [Unnecessary heating] : • Last period at the end of the day when the zone is unoccupied but heating still happening. • First period of the day when the zone is unoccupied, heating is happening, but preheating period is finished (Tzone-Tsetpoint <tref_lim) :="" behind="" during="" emissions="" for="" heat="" heating="" maximum="" of="" op_h(v,t)="" opening="" p_{max,h}(v)="" power="" step="" t="" th="" the="" time="" v="" v<="" valve=""></tref_lim)>					
Calculating frequency	According to need : dail	y, weekly, n	nonthly			
Calculation Met	hodology					
Step	Description					
01-	Choice of a period, or ca	alculation fo	or default p	eriods (days, v	weeks, m	onths, years)
02	 Identification of time periods for each valve where : Last period at the end of the day when the zone is unoccupied, but heating still happening (over anticipation) First period of the day when the zone is unoccupied, heating is happening, but preheating period is finished (Tzone-Tsetpoint<tref_lim)< li=""> </tref_lim)<> 					
03	For the different periods identified, and for the different zones and valves considered, the above formula can be calculated					
Data Source						
Data description	Data source	Data c frequency	collection	Data collecti range	on time	Data Owner
		tract No. C				Dago 176 of 227

Temperature in the different zones	BMS	15 min ?	Ongoing in real time	ENGIE
Valve opening in the different zones	BMS	15 min ?	Ongoing in real time	ENGIE
Temperature setpoints in the different zones	BMS	15 min ?	Ongoing in real time	ENGIE
Config pilot	config	-	-	ENGIE

KPI N°3						
KPI-Name	Unnecessary HVAC cooling emiss	ion	KPI-ID	KPI-2bis		
КРІ-Туре	Technical/Business					
Description	 Evaluate the amount of energy emission (heating or cooling) that could be considered as unnecessary regarding the actual building occupancy, especially when : Preheating or precooling time over-anticipation Heating/cooling but no one present for the rest of the day. The percentage of valve opening, attributed to a specific weight will be considered as the measure of the unnecessary heating or cooling emission. 					
Target Value	<10%	Threshold Value		30%		
Rounding	Rounding to 0.1%					
Unit	%					
Formula	$\frac{\sum_{\nu=0}^{nb_{nb_valve}} \sum_{t \in [necessary \ heating]} Op_c(\nu, t) * P_{max,c}(\nu)}{\sum_{\nu=0}^{nb_{nb_{valve}}} \sum_{t \in [whole \ period]} Op_c(\nu, t) * P_{max,c}(\nu)}$ With : [Unnecessary heating periods] : • Last period at the end of the day when the zone is unoccupied, but heating still happening. • First period of the day when the zone is unoccupied, heating is happening, but preheating period is finished (Tzone-Tsetpoint <tref_lim) Op_c (v,t) : opening of the valve v for cooling during the time step t P_{max,c}(v) : Maximum power of the cooling emissions behind the valve v</tref_lim) 					
Calculating frequency	According to need : daily, weekly, monthly					
Calculation Met	hodology					

Step	Description			
01-	Choice of a period, or calculation for default periods (days, weeks, months, years)			
02	 Identification of time periods for each valve where : Last period at the end of the day when the zone is unoccupied, but cooling still happening (over anticipation) First period of the day when the zone is unoccupied, cooling is happening, but precooling period is finished (Tzone-Tsetpoint<tref_lim)< li=""> </tref_lim)<> 			
03	For the different periods identified, and for the different zones and valves considered, the above formula can be calculated			
Data Source				
Data description	Data source	Data collection frequency	Data collection time range	Data Owner
Temperature in the different zones	BMS	15 min ?	Ongoing in real time	ENGIE
Valve opening in the different zones	BMS	15 min ?	Ongoing in real time	ENGIE
Temperature setpoints in the different zones	BMS	15 min ?	Ongoing in real time	ENGIE
Config pilot	config	-	-	ENGIE

KPI N°4					
KPI-Name	Gain on heating consumption KPI-II		KPI-ID	КРІ-З	
КРІ-Туре	Technical/Business				
Description	Climate corrected gain on heating energy consumption in comparison with the consumption of the previous year				
Target Value	>10%	Threshold Value		0%	
Rounding	0.1%				
Unit	%				
Formula	For a given period : $\frac{Cs_{ht,p} * HDD(p, Text(p)) - Cs_{ht,p_py} * HDD(p_py, Text(p_py))}{Cs_{ht,p_py} * HDD(p_py, Text(p_py))}$				

	With : Cs _{ht,p} : energy consumption for heating during the period p Cs _{ht,p_py} : energy consumption for heating during the period p but the previous year HDD(p,Text(p)) : Heating degree day for the period p and the external temperature over the period HDD(p,Text(p)) : Heating degree day for the period p of the previous year and the external temperature during this period à cf. formula of calculation HDD at the end of the document.			
Calculating frequency	On request			
Calculation Met	hodology			
Step	Description			
01-	Choice of a period, or calculation for default periods (days, weeks, months, years) à Data of the previous year over the same period has to be available			
02	Application of the formula			
Data Source				
Data description	Data source	Data collection frequency	Data collection time range	Data Owner
Energy consumption for heating	BMS	15 min ?	Ongoing in real time	ENGIE
External temperature setpoint	BMS/	1h or less	Defined periods	ENGIE

KPI N°5				
KPI-Name	Gain on cooling consumption		KPI-ID	KPI-4
КРІ-Туре	Technical/Business			
Description	Climate corrected gain on cooling energy consumption in comparison with the consumption of the previous year			
Target Value	>10%	Threshold Value		0%
Rounding	0.1%			
Unit	%			
Formula	For a given period :			

	$Cs_{c,p} * CDD(p, Text(p)) - Cs_{c,p_py} * CDD(p_py, Text(p_py))$			
	$\frac{Cs_{c,p_py} * CDD(p_py, Text(p_py))}{Cs_{c,p_py} * CDD(p_py, Text(p_py))}$			
	 With : Cs_{ht,p}: energy consumption for cooing during the period p Cs_{ht,p_py}: energy consumption for cooling during the period p but the previous year CDD(p,Text(p)) : cooling degree day for the period p and the external temperature over the period CDD(p,Text(p)) : cooling degree day for the period p of the previous year and the external temperature during this period If <i>cf. formula of calculation CDD at the end of the document</i>. 			
Calculating frequency	On request			
Calculation Met	hodology			
Step	Description			
01-	Choice of a period, or calculation for default periods (days, weeks, months, years) 2 Data of the previous year over the same period has to be available			
02	Application of the formula			
Data Source				
Data description	Data source	Data collection frequency	Data collection time range	Data Owner
Energy consumption for cooling	BMS	15 min ?	Ongoing in real time	ENGIE
External temperature setpoint	BMS/	1h or less	Defined periods	ENGIE

LLUC P-3a-02: Provide Demand Response services through building inertia and HVAC controls

KPI N°1				
KPI-Name	Mean error on heating load prediction KPI-ID KPI-1		KPI-1	
КРІ-Туре	Technical/Business			
Description	Mean error (%) on the HVAC heating load prediction calculated every 30min as the errors between the predicted and the realized energy consumption and the predicted one (when HVAC is operating).			

Target Value	Error <10%	Threshold	Value Mean e	rror above 20%		
Rounding	0.1%	0.1%				
Unit	%	%				
		$\sum_{t=0}^{nb_{timetep}} \frac{Cs_{ht,model}(t) - Cs_{ht,real}(t)}{Cs_{ht,real}(t) * nb_{timestep}}$				
Formula		consumption predicted l ng consumption measur		nestep t		
Calculating frequency	Once, daily, weekly,	monthly				
Calculation Met	hodology					
Step	Description					
01-	Choice of a period, o	or calculation for default	periods (days, weeks, n	nonths, years)		
02	Application of formu	ıla				
Data Source						
Data description	Data source	Data collection frequency	Data collection time range	Data Owner		
Energy consumption for heating	BMS	30 min	Ongoing in real time	ENGIE		
Predicted		30 min		ENGIE		

KPI N°2					
KPI-Name	Mean error on cooling load pred	iction	KPI-ID	KPI-1bis	
КРІ-Туре	Technical/Business	Technical/Business			
Description	Mean error (%) on the HVAC cooling load prediction calculated every 30min as the errors between the predicted and the realized energy consumption and the predicted one (when HVAC is operating).				
Target Value	Error <10% Threshold Value Mean error above 20%				
Rounding	0.1%				

Unit	%	%			
Formula	$\sum_{t=0}^{nb_{timetep}} \frac{Cs_{c,model}(t) - Cs_{c,real}(t)}{Cs_{c,real}(t) * nb_{timestep}}$ With : Cs _{c,model} (t) : cooling consumption predicted by the model for the timestep t Cs _{c, real} (t) : real cooling consumption measured for the timestep t				
Calculating frequency	Once, daily, weekly, m	nonthly			
Calculation Meth	nodology				
Step	Description				
01-	Choice of a period, or	calculation for default p	periods (days, weeks, m	onths, years)	
02	Application of formula	3			
Data Source					
Data description	Data source Data collection frequency Data collection time range Data Owner				
Energy consumption for cooling	BMS	30 min Ongoing in real time ENGIE			
Predicted energy consumption	Platoon tool	30 min	-	ENGIE	

KPI N°3					
KPI-Name	95-percentile error on heating lo	ad prediction	KPI-ID	КРІ-2	
КРІ-Туре	Technical/Business				
Description	95-percentile Error on the HVAC heating load prediction calculated every 30min as the errors between the predicted and the realized energy consumption and the predicted one (when HVAC is operating).				
Target Value	Error <20%	Threshold Value Mean error above 40%		Mean error above 40%	
Rounding	0.1%				
Unit	%				
Formula	Error on each timestep				

		$Err(t) = \frac{Cs_{ht,model}(t) - Cs_{ht,real}(t)}{Cs_{ht,real}(t)}$				
	Then, identification o	Then, identification of the 95-percentile of the Err(t) over the period				
		With : $C_{Sht,model}(t)$: heating consumption predicted by the model for the timestep t $C_{Sht,real}(t)$: real heating consumption measured for the timestep t				
Calculating frequency	Once, daily, weekly, n	nonthly				
Calculation Met	hodology					
Step	Description					
01-	Choice of a period, or	calculation for default p	periods (days, weeks, m	onths, years)		
02	Application of the for	mula				
Data Source	•					
Data description	Data source	Data collection frequency	Data collection time range	Data Owner		
Energy consumption for heating	BMS	30 min	ENGIE			
Predicted energy consumption	Platoon tool	30 min	-	ENGIE		

KPI N°4					
KPI-Name	95-percentile error on cooling lo	ad prediction	KPI-ID	KPI-2bis	
КРІ-Туре	Technical/Business				
Description	Error (%) on the HVAC cooling load prediction calculated every 30min as the errors between the predicted and the realized energy consumption, divided by the predicted one (when HVAC is operating). The error can be characterized over the period: mean, standard deviations, daily distribution, seasonal distribution.				
Target Value	Error <20% Threshold Value Mean error above 40%				
Rounding	0.1%				
Unit	%				

	Error on each timestep					
	$Err(t) = \frac{Cs_{c,model}(t) - Cs_{c,real}(t)}{Cs_{c,real}(t)}$					
Formula	Then, identification of the 95-percentile of the Err(t) over the period With : $Cs_{c,model}(t)$: cooling consumption predicted by the model for the timestep t $Cs_{c, real}(t)$: real cooling consumption measured or the timestep t					
Calculating frequency	Once, daily, weekly, m	nonthly				
Calculation Meth	nodology					
Step	Description					
01-	Choice of a period, or	calculation for default p	periods (days, weeks, m	onths, years)		
02	Application of formula	3				
Data Source	•					
Data description	Data source Data collection frequency Data collection time range Data Owner					
Energy	DMC					
consumption for cooling	BMS	30 min Ongoing in real time ENGIE				
Predicted						
energy consumption	Platoon tool	30 min	-	ENGIE		

KPI N°5					
KPI-Name	Error on the flexibility prediction	I	KPI-ID	KPI-4	
КРІ-Туре	Technical/Business				
Description	Error (%) on the prediction of "flexibility available" on the building, in term of time of interruption of heating or cooling in the building, during flexibility event implemented in the building.				
Target Value	Target : 10%	Threshold Value 3		30%	
Rounding	0.1%				
Unit	%				
Formula	Time _{int,model} – Time _{int,real} Time _{int,real}				

	Time_(int,model) : time of interruption planned in the model Time_(int, real) : actual time of interruption that was actually implemented in the building.				
Calculating frequency	After interruption event				
Calculation Meth	nodology				
Step	Description				
01-	Application of the formula				
Data Source					
Data description	Data source	Data collection frequency	Data collection time range	Data Owner	
Predicted time of interruption	Platoon tool 30 min - ENGIE				
Interruption	BMS	-	-	ENGIE	

KPI N°6					
KPI-Name	Mean error on HVAC load predic with load shifting programs	ction for days	KPI-ID	KPI-5	
КРІ-Туре	Technical/Business				
Description	Mean error (%) on the HVAC load prediction calculated every 30min as the errors between the predicted and the realized energy consumption and the predicted one (when HVAC is operating), in case of the implementation of a load shifting program (not the usual building operation)				
Target Value	Error <10% Threshold Value		20%		
Rounding	0.1%				
Unit	%				
Formula	% $\sum_{t=0}^{nb_{timetep}} \frac{Cs_{ht,c,model}(t) - Cs_{ht,c,real}(t)}{Cs_{ht,c,real}(t) * nb_{timestep}}$ With : Csht,c,model(t) : heating or cooling consumption predicted by the model for the timestep t Csht, real(t) : real heating or cooling consumption measured for the timestep t				

Calculating frequency	For a day often implementation of load shifting any system.					
Calculation Met	Calculation Methodology					
Step	Description					
01	Application of the form	nula				
Data Source						
Data description	Data source	Data collection frequency	Data collection time range	Data Owner		
Energy consumption for heating	BMS	30 min	Ongoing in real time	ENGIE		
Energy consumption for cooling	BMS	30 min	Ongoing in real time	ENGIE		
Predicted energy consumption	Platoon tool	30 min	-	ENGIE		

Pilot 3b - PI Advanced Energy Management System and Spatial (Multi-Scale) Predictive Models in the Smart City

LLUC-01

KPI N°1				
KPI-Name	Forecast Error		KPI-ID	PI_KPI01
КРІ-Туре	Technical			
Description	The KPI calculates the % of deviation actual consumption in the building. The KPI checks how closely the predic			
Target Value	+-5%	Threshold Valu	e	+-20%
Rounding	round off to 0% for values between 0	.00 and 0.49 ai	nd to 1% fo	or values above
Unit	Kilowatt per hour (KWh)			
Formula	FE _i = Forecast Error % of building "i" F _{F,i} = Forecasted value of building "i" F _{A,i} = Actual value of building "i" N = number of buildings utilized for t		Ei	
Calculating frequency	Weekly (Alert if Threshold Value is ex	ceeded)		
Calculation Met				
Step	Description			
01	Select the time range and the specific 1. Total energy consumption or 2. Total energy consumption for			
02	 Calculate the forecast taking into acc Real data consumption Temperature and Humidity (inte Number of Customers and Emplo Building open hours and shift 	rnal and extern	ial)	

	 Building Climate Zone, m³ 				
03	 Get the Real consumption data (of the target month) taking into account: The full month active energy consumption (Total Active Energy) of the selected building or of a specific line (Detailed Energy Consumption) 				
04	Apply the formula				
05	The formula will be app will be calculated from	blied for each one of the s these selected values.	selected buildings, then a	rithmetic mean	
Data Source					
Data description	Data source	Data collection frequency	Data collection time range	Data Owner	
Office Registry	Building Data	At starting up and then occasionally, when changes occur	No Temporal Range	Poste Italiane	
Building Calendar	Building Data	Monthly	From 01/01/2018	Poste Italiane	
Total Active Energy consumption	Energy Consumption	Monthly		Poste Italiane	
Detailed Energy Consumption DL_102	Energy Consumption	Monthly	TBD	Poste Italiane	
Detailed Energy Consumption	Energy Consumption	Daily	From 01/01/2018	Poste Italiane	
Temperature, Humidity	Weather		From 01/01/2018	External Services	
Customers Number	Occupancy	Monthly	From 01/01/2018	Poste Italiane	
Employees Number	Occupancy	Monthly	From 01/01/2018	Poste Italiane	

KPI N°2				
KPI-Name	Building Benchmarking Btl_LY		KPI-ID	РІ_КРІО2
КРІ-Туре	Business			
Description	The KPI calculate, in % value, the difference in Energy consumption of a building with itself during the time. The comparison will be made with the previous year consumption			
Target Value	+-10%	Threshold Valu	le	+-20%

Rounding	round off to 0% for values between 0.00 and 0.49 and to 1% for values above				
Unit	Kilowatt per hour (KWh)				
Formula	$\mathbf{B}_{\mathbf{BTI}_{\mathbf{LY},\mathbf{i}}} = \frac{(\mathrm{EC}_{\mathbf{y},i} - \mathrm{EC}_{\mathbf{y}-1,i})}{\mathrm{EC}_{\mathbf{y}-1,i}} * 100$ $\mathbf{B}_{\mathbf{BTI}_{\mathbf{LY},\mathbf{M}}} = \frac{1}{\mathrm{N}} \sum_{i} \mathrm{B}_{\mathrm{BTI}_{\mathbf{LY},i}}$				
	BBTILY,i = Building "i" last year comparison (with itself) ECy,i = Energy Consumption in the time range for building "i" ECy-1, i= Energy Consumption in the same time range of the previous year for building "i" N = number of buildings utilized for the KPI calculation				
Calculating frequency	Weekly				
Calculation Meth	odology				
Step	Description				
01	 The calculation takes into account: a. The time range (reference week) b. The time range for benchmark (the same week of the previous year) c. The building d. The perimeter of the analysis: Total energy consumption, or, where available the 				
02	energy consumption of heating or cooling, lighting The formula will be applied for each one of the selected buildings, then arithmetic mean will be calculated from these selected values.				
03	Normalize both the consumptions by the comfort level (where available) Comfort level is a range of internal temperature and humidity that must be complied Comfort level = f (internal temperature, internal humidity) (Internal humidity, internal temperature) = f (external humidity, external temperature)				
Data Source					
Data description	Data source	Data collection frequency	Data collection time range	Data Owner	
Office Registry	Building Data	At starting up and then occasionally, when changes occur	No Temporal Range	Poste Italiane	
Building Calendar	Building Data	Monthly	From 01/01/2018	Poste Italiane	
Detailed Energy Consumption	Energy Consumption	Daily	From 01/01/2018	Poste Italiane	

Detailed Energy Consumption	Energy Consumption	Monthly	TBD	Poste Italiane
DL_102				
Total Active	Energy Consumption	Monthly	From 01/01/2018	Poste Italiane
Energy				
consumption				
Temperature,	Weather			External
Humidity				Services

KPI N°3					
KPI-Name	Building Bend	Building Benchmarking Btl_LWs KPI-ID PI_KPI03			PI_KPI03
КРІ-Туре	Business				
Description	The KPI calcu	late, in % value, the di	fference in Ener	gy consump	tion of a building with itself
	during		the		time.
		son will be made with			
Target Value	+-10%		Threshold Val	ue	+-20%
Rounding	round off to (0% for values between	0.00 and 0.49 a	ind to 1% fo	r values above
Unit	Kilowatt per	nour (KWh)			
Formula		$\begin{split} \mathbf{B}_{BTI_{LW},i} &= \frac{(EC_{W,i} - [\frac{EC_{W-1,i} + EC_{W-2,i}]}{2}]}{(EC_{W-1,i} + EC_{W-2,i})/2} * 100\\ \mathbf{B}_{BTI_{LW},M} &= \frac{1}{N} \sum_{i} B_{BTI_{LW},i} \end{split}$ $\begin{split} BBTILY,i &= Building "i" \text{ comparison with two last weeks (with itself)}\\ ECw,i &= Energy \text{ Consumption in the time range for building "i"} \end{split}$			
		of buildings utilized for			6
Calculating frequency	Weekly				
Calculation Met	hodology				
Step	Description				
01	The calculation	on takes into account:			
	2.1.1.	The time range (re	eference week)		
	2.1.2.	The time range fo	r benchmark (th	ie two previ	ous weeks)
	2.1.3.	The building			
	2.1.4.	-	-	-	y consumption, or, where
	avai	able the energy consu	imption of heati	ng or coolin	g, lighting

02	The formula will be applied for each one of the selected buildings, then arithmetic mean will be calculated from these selected values.				
03	Normalize both the consumptions by the comfort level (where available) Comfort level is a range of internal temperature and humidity that must be complied Comfort level = f(internal temperature, internal humidity) (Internal humidity, internal temperature) = f (external humidity, external temperature)				
Data Source					
Data description	Data source	Data collection frequency	Data collection time range	Data Owner	
Office Registry	Building Data	At starting up and then occasionally, when changes occur	No Temporal Range	Poste Italiane	
Building Calendar	Building Data	Monthly	From 01/01/2018	Poste Italiane	
Detailed Energy Consumption	Energy Consumption	Daily	From 01/01/2018	Poste Italiane	
Detailed Energy Consumption DL_102	Energy Consumption	Monthly	TBD	Poste Italiane	
Total Active Energy consumption	Energy Consumption	Monthly	From 01/01/2018	Poste Italiane	
Temperature, Humidity	Weather			External Services	

KPI N°4				
KPI-Name	Building Benchmarking BtB		KPI-ID	PI_KPI04
КРІ-Туре	Business			
Description	The KPI calculate, in % value, buildings.	, the difference in Ene	ergy consum	ption between a cluster of
Target Value	+-10%	Threshold Value		+-20%
Rounding	round off to 0% for values be	tween 0.00 and 0.49 a	ind to 1% for	r values above
Unit	Kilowatt per hour (KWh)			
Formula				

	Г				
	$\mathbf{B}_{\mathbf{BTB,i}} = \frac{\frac{B_{i}}{m_{i}^{3}} - (\sum_{j} \frac{B_{j}}{m_{j}^{3}})/(n-1)}{(\sum_{j} \frac{B_{j}}{m_{i}^{3}})/(n-1)} * 100$				
		$\mathbf{B}_{\mathbf{B}\mathbf{T}\mathbf{B},\mathbf{i}} = \frac{\mathbf{H}_{1}}{\mathbf{H}_{2}}$	* 100		
		$(\sum_{j} \frac{j}{m_{j}^{3}})/(r$	n – 1)		
		,			
		$\mathbf{B}_{\mathbf{BTB},\mathbf{M}} = \frac{1}{N} \sum_{i}$	Bran:		
		$\sim_{BIB,M}$ N \angle_{i}			
		Consumption comparison	with the mean of the sam	le cluster	
	B _i = Energy Consumption B _i = = Energy Consumption	tion of Building "j" (Som	e cluster of "i". i.e., som	e typology and	
	destination use)				
	n = number of buildings	in the cluster			
	m ³ = volume of building				
	N = number of buildings	utilized for the KPI calcul	ation		
Calculating	Weekly (Alert if Thresho	ld Value is exceeded)			
frequency					
Calculation Meth	odology				
	D				
Step	Description				
01	The calculation takes int	o account:			
	-	(current year last week)			
	2. The building typ				
	3. The building's c				
		of the analysis: Total ener		re available the	
02		ption of heating or coolin lied for each one of the s		rithmetic mean	
02	will be calculated from t		selected buildings, then a		
03		tions of both the building	s by the comfort level (wh	nere available).	
		C C			
	Comfort level* is a range	e of internal temperature	and humidity that must b	be complied.	
		nal temperature, internal			
	(Internal humidity, inter	nal temperature) = f(exte	rnal humidity, external te	mperature)	
Data Source					
Data	Data source	Data collection	Data collection time	Data Owner	
description		frequency	range		
Office Registry	Building Data	At starting up and then	No Temporal Range	Poste Italiane	
	_	occasionally, when			
		changes occur			
Building	Building Data	Monthly	From 01/01/2018	Poste Italiane	
Calendar					
Detailed Energy	Energy Consumption	Daily	From 01/01/2018	Poste Italiane	
Consumption	- 0, <i>series</i>		, - , - , - , - , - , - , - , - , -		

Detailed Energy Consumption DL_102	Energy Consumption	Monthly	TBD	Poste Italiane
Total Active Energy consumption	Energy Consumption	Monthly	From 01/01/2018	Poste Italiane
Temperature, Humidity	Weather		From 01/01/2018	External Services

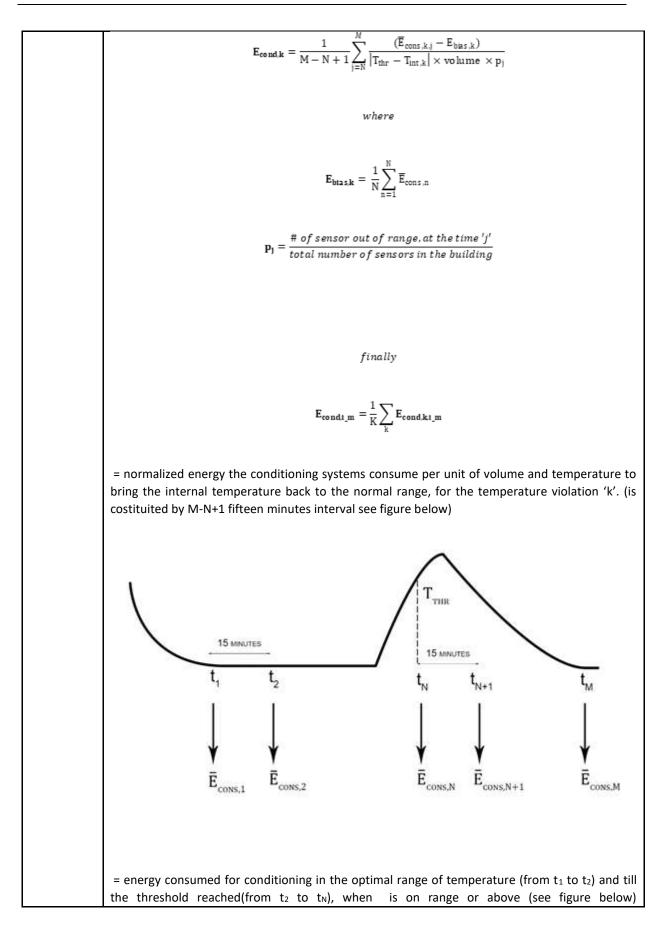
KPI N°5						
KPI-Name	CO2 emission reduction	к	(PI-ID	PI_KPI05		
KPI-Type	Business	Business				
Description	The KPI calculate the impact of energy range	The KPI calculate the impact of energy consumption reduction on CO2 emissions in a time range				
Target Value	≥ 10%	Threshold Value		0≤ ∆(CO ₂) _{y,M} <10%		
Rounding	round off to 0 for values between ().00 and 0.49 and t	o 1 for v	alues above		
Unit	Кд	Kg				
Formula	$\Delta(\mathbf{KWh})_{y,i} = \frac{\text{Budget }(\text{Kwh})_{y,i} - \text{Consumption }(\text{Kwh})_{y,i}}{\text{Consumption }(\text{Kwh})_{y,i}} * 100$ $\Delta(\mathbf{KWh})_{y,i} = \Delta(\mathbf{CO}_2)_{y,i}$					
	Because $C_{02} (Kg) = 0,36099 * Energy (KWh)$					
	Finally $\Delta(\textbf{CO}_2)_{y,M} = \frac{1}{M} \sum_i \Delta(\text{CO}_2)_{y,i}$					
	Budget (kWh)y,i = yearly budget of building "i" Consumption (kWh)y,I = yearly consumption of building "i" Δ (KWh) y,i = consumption saving percentage of building "i" Δ (CO ₂) y,I = CO ₂ saving percentage of building "i" M = number of buildings utilized for the KPI calculation					
Calculating frequency	Yearly					

Calculation Meth	Calculation Methodology				
Step	Description				
01	Calculate the yearly tota	al consumption of the bui	ding		
02	The formula will be applied for each one of the selected buildings, then arithmetic mean will be calculated from these selected values.				
Data Source					
Data description	Data source	Data collection frequency	Data collection time range	Data Owner	
Office Registry	Building Data	At starting up and then occasionally, when changes occur	Static - No Temporal Range	Poste Italiane	
Building Calendar	Building Data	Monthly	From 01/01/2018	Poste Italiane	
Total Active Energy consumption	Energy Consumption	Monthly	From 01/01/2018	Poste Italiane	

LLUC-02

KPI N°6				
KPI-Name	Recall		KPI-ID	PI_KPI06
КРІ-Туре	Technical			
Description	The KPI measures the number of cases which correctly classified as problematic (True Positives) by the algorithm divided by the sum of the cases that were classified as normal but actually were problematic (False Positives) plus the number of True Positives.			
Target Value	90%	Threshold Valu	ue	>=80%
Rounding	N/A			
Unit	Adimensional	Adimensional		
Formula	Recall = Tru	TruePo ePositives +	ositives - FalsePo	sitives

Calculating frequency	Monthly			
Calculation Meth	odology			
Step	Description			
01	The time range compri	ses the historical data up	to the month chosen for t	he analysis
02	abnormalities	fy all those cases where in the Heating and Cooling e cases with anomalous be	system and those which	are classified as
03	Apply the formula			
04	The formula will be app	lied for each one of the se	elected buildings.	
Data Source				
Data description	Data source	Data collection frequency	Data collection time range	Data Owner
Office Registry	Building Data	At starting up and then occasionally, when changes occur	Static - No Temporal Range	Poste Italiane
Building Calendar	Building Data	Monthly	From 01/01/2018	Poste Italiane
Detailed Energy Consumption	Energy Consumption	Daily	From 01/01/2018	Poste Italiane
Alarms of abnormal behaviours of the systems	System Fault	Daily	From June 2021	Poste Italiane
Temperature, Humidity	Weather		From 01/01/2018	External Services
Systems Registry	Building Systems	At starting up and then occasionally, when changes occur	No Temporal Range	Poste Italiane


KPI N°7				
KPI-Name	Precision	KPI-I	D	PI_KPI07
КРІ-Туре	Technical			
Description	The KPI measures Pre-MATE's performance. Precision, is defined as the ratio of all cases that are correctly identified as problematic (True Positives) to all cases that are identified as problematic, even if they are not, actually (All Positives-True and False).			
Target Value	90%	Threshold Value		>=80%

Rounding	N/A					
Unit	Adimensional					
Formula	Prec	$Precision = \frac{TruePositives}{TruePosives + FalsePositives}$				
Calculating frequency	Monthly					
Calculation Meth	odology					
Step	Description					
01	The time range compris	ses the historical data up t	o the month chosen for tl	he analysis		
02		where correctly identifier stem and those which are e Negatives)				
03	Apply the formula					
04	The formula will be app	plied for each one of the se	elected buildings.			
Data Source	L					
Data description	Data source	Data collection frequency	Data collection time range	Data Owner		
Office Registry	Building Data	At starting up and then occasionally, when changes occur	No Temporal Range	Poste Italiane		
Building Calendar	Building Data	Monthly	From 01/01/2018	Poste Italiane		
Detailed Energy Consumption	Energy Consumption	Daily	From 01/01/2018	Poste Italiane		
Alarms of abnormal behaviours of the systems	Systems Fault	Daily	From June 2021	Poste Italiane		
Temperature, Humidity	Weather		From 01/01/2018	External Services		
Systems Registry	Building Systems	At starting up and then occasionally when changes occur	No Temporal Range	Poste Italiane		

KPI N°8						
KPI-Name	F1-Score			KPI-ID	PI_KPI0	8
КРІ-Туре	Technical	Technical				
Description	The KPI is used in cases score could be used to precision and recall, usi	combine the	two criteria	a. The F_1 sco	re is the hai	
Target Value	90%	-	Threshold V	alue	>=80%	
Rounding	N/A					
Unit	Adimensional					
		$F_1 = 2$	Precision Precision	n · Recall n + Recall		
Calculating frequency Calculation Meth	Bi-Monthly					
Step	Description					
01	The time range comprise	ses the historio	cal data up t	o the month	chosen for t	he analysis
02	Calculate Recall and Pre	ecision KPIs be	fore			
03	Apply the formula					
04	The formula will be appl	lied for each o	one of the se	elected buildi	ngs	
Data Source						
Data description	Data source	Data frequency	collection	Data colle range	ction time	Data Owner
Office Registry	Building Data	At starting u occasionally changes occ	when	No Tempor	al Range	Poste Italiane

Building Calendar	Building Data	Monthly	From 01/01/2018	Poste Italiane
Detailed Energy Consumption	Energy Consumption	Daily	From 01/01/2018	Poste Italiane
System Registry	Building Systems	At starting up and then occasionally, when changes occur	No Temporal Range	Poste Italiane
Employees Number	Occupancy	Monthly	From 01/01/2018	Poste Italiane

KPI N°09				
KPI-Name	Performances Analysis		KPI-ID	PI_KPI09
КРІ-Туре	Technical/Business			
Description	This KPI measures the energy cons internal temperature, normalized for	•	• •	ns for returning to optimal
Target Value	5% (month to month increase)	Threshold \		10% month to month increase)
Rounding	No			
Unit	KWh			
Formula				

$\begin{tabulate}{llllllllllllllllllllllllllllllllllll$		(19° or above in the heating tabulated period, 27° or below in the cooling tabulated period), for the temperature violation (k')
cooling tabulated period), for the temperature violation 'k') = Energy consumption at time 'j' = temperatute threshold : they are tabulated : 19° (in the heating tabulated period); 27° (in the cooling tabulated period) = max out of range internal temperature to recover for the temperature violation 'k' volume= building volume = normalized energy the conditioning systems consume per unit of volume and temperature to bring the internal temperature back to the normal range, for the month 'm' and the building 'i' = ratio between the number of sensor out of range at the time 'j and the total number of sensors in the building frequency Calculation Monthly Step Description 01 Data have to be taken on building type = Smart building, in the total time window of availability of data. Data must be considered only for days and hours in which the buildings are open 03 Calculate the plants consumption taking into account, for each temperature violation, the energy consumed for the conditioning, normalized by bias energy, temperature interval, and number of sensors outside range in that moment 04 Apply the formulas. We will have a value for each smart building and for each month, so could be compared the performance of different buildings (in which case will be useful compare the same month)		the temperature violation 'k')
cooling tabulated period), for the temperature violation 'k') = Energy consumption at time 'j' = temperatute threshold : they are tabulated : 19° (in the heating tabulated period); 27° (in the cooling tabulated period) = max out of range internal temperature to recover for the temperature violation 'k' volume= building volume = normalized energy the conditioning systems consume per unit of volume and temperature to bring the internal temperature back to the normal range, for the month 'm' and the building 'i' = ratio between the number of sensor out of range at the time 'j and the total number of sensors in the building frequency Calculation Monthly Step Description 01 Data have to be taken on building type = Smart building, in the total time window of availability of data. Data must be considered only for days and hours in which the buildings are open 03 Calculate the plants consumption taking into account, for each temperature violation, the energy consumed for the conditioning, normalized by bias energy, temperature interval, and number of sensors outside range in that moment 04 Apply the formulas. We will have a value for each smart building and for each month, so could be compared the performance of different buildings (in which case will be useful compare the same month)		$\vec{E}_{cons,1}$ $\vec{E}_{cons,2}$ $\vec{E}_{cons,N}$
= ratio between the number of sensor out of range at the time 'j and the total number of sensors in the building Calculating frequency Monthly Calculation Methodology Calculation Methodology Step Description 01 Data have to be taken on building type = Smart building, in the total time window of availability of data. Data must be considered only for days and hours in which the buildings are open 03 Calculate the plants consumption taking into account, for each temperature violation, the energy consumed for the conditioning, normalized by bias energy, temperature interval, and number of sensors outside range in that moment 04 Apply the formulas. We will have a value for each smart building and for each month, so could be compared the performance of different months of the same building for degradation analysis or could be compared the performance of different buildings (in which case will be useful compare the same month)		<pre>cooling tabulated period), for the temperature violation 'k') = Energy consumption at time 'j' = temperatute threshold : they are tabulated : 19° (in the heating tabulated period) ; 27° (in the cooling tabulated period) = max out of range internal temperature to recover for the temperature violation 'k' volume= building volume = normalized energy the conditioning systems consume per unit of volume and temperature to bring the internal temperature back to the normal range, for the month 'm' and the building 'i'</pre>
frequency Calculation Methodology Step Description 01 Data have to be taken on building type = Smart building, in the total time window of availability of data. Data must be considered only for days and hours in which the buildings are open 03 Calculate the plants consumption taking into account, for each temperature violation, the energy consumed for the conditioning, normalized by bias energy, temperature interval, and number of sensors outside range in that moment 04 Apply the formulas. We will have a value for each smart building and for each month, so could be compared the performance of different months of the same building for degradation analysis or could be compared performance of different buildings (in which case will be useful compare the same month)		= ratio between the number of sensor out of range at the time 'j and the total number of sensors
Step Description 01 Data have to be taken on building type = Smart building, in the total time window of availability of data. Data must be considered only for days and hours in which the buildings are open 03 Calculate the plants consumption taking into account, for each temperature violation, the energy consumed for the conditioning, normalized by bias energy, temperature interval, and number of sensors outside range in that moment 04 Apply the formulas. We will have a value for each smart building and for each month, so could be compared the performance of different months of the same building for degradation analysis or could be compared performance of different buildings (in which case will be useful compare the same month)	Calculating frequency	
01 Data have to be taken on building type = Smart building, in the total time window of availability of data. Data must be considered only for days and hours in which the buildings are open 03 Calculate the plants consumption taking into account, for each temperature violation, the energy consumed for the conditioning, normalized by bias energy, temperature interval, and number of sensors outside range in that moment 04 Apply the formulas. We will have a value for each smart building and for each month, so could be compared the performance of different months of the same building for degradation analysis or could be compared performance of different buildings (in which case will be useful compare the same month)	Calculation N	/ Aethodology
data. Data must be considered only for days and hours in which the buildings are open 03 Calculate the plants consumption taking into account, for each temperature violation, the energy consumed for the conditioning, normalized by bias energy, temperature interval, and number of sensors outside range in that moment 04 Apply the formulas. We will have a value for each smart building and for each month, so could be compared the performance of different months of the same building for degradation analysis or could be compared performance of different buildings (in which case will be useful compare the same month)	Step	Description
 Calculate the plants consumption taking into account, for each temperature violation, the energy consumed for the conditioning, normalized by bias energy, temperature interval, and number of sensors outside range in that moment Apply the formulas. We will have a value for each smart building and for each month, so could be compared the performance of different months of the same building for degradation analysis or could be compared performance of different buildings (in which case will be useful compare the same month) 	01	data.
We will have a value for each smart building and for each month, so could be compared the performance of different months of the same building for degradation analysis or could be compared performance of different buildings (in which case will be useful compare the same month)	03	Calculate the plants consumption taking into account, for each temperature violation, the energy consumed for the conditioning, normalized by bias energy, temperature interval, and number of
Data Source	04	Apply the formulas. We will have a value for each smart building and for each month, so could be compared the performance of different months of the same building for degradation analysis or could be compared performance of different buildings (in which case will be useful compare the same
	Data Source	

Data description	Data source	Data collection frequency	Data collection time range	Data Owner
Office Registry	Building Data	At starting up and then occasionall y, when changes occur	Static - No Temporal Range	Poste Italiane
Building Calendar	Building Data	Monthly	From 01/01/2018	Poste Italiane
Detailed Energy Consumptio n	Energy Consumption (and internal temperatures)	Daily	From when they are available	Poste Italiane

LLUC-03

KPI N°10				
KPI-Name	Lighting Estimation		KPI-ID	PI_KPI10
KPI-Type	Technical			
Description	The KPI calculates the % of devia consumption.	tion between th	ie actual a	nd the estimated lighting
Target Value	+/- 5%	Threshold Valu	he	+/- 10%
Rounding	round off to 0% for values between 0.00 and 0.49 and to 1% for values above			
Unit	Kilowatt per hour (KWh)			
Formula		$E_{i} = \frac{L_{e,i} - L_{a,i}}{L_{a,i}} *$ $LE_{M} = \frac{1}{N} \sum_{i} LI$		
	Lei = Lighting consumption estimate Le = Lighting consumption actual of N = number of buildings utilized for	d of building "I" building "I"	ion	

Calculating frequency	Weekly			
Calculation Meth	odology			
Step	Description			
01	Select the time range a	nd the building (month)		
02	Calculate the estimated	d consumption considering	g the following informatio	n:
		rgy consumption in the rim		
		r on % of incidence of co	•	g and Cooling
	systems			
	3. Building o	pen hours and shift		
03				
		estimation will be compa be exploited by buildings		ption (where
03	Calculate the real const			
04	Apply the formula			
05	The formula will be app	plied for each one of the se	elected buildings, then ari	thmetic mean
	will be calculated from	these selected values.		
Data Source	I			
Data	Data source	Data collection	Data collection time	Data Owner
description		frequency	range	
Office Registry	Building Data	At starting up and then	No Temporal Range	Poste
		occasionally when		Italiane
		changes occur		
Building	Building Data	Monthly	From 01/01/2018	Poste
Calendar				Italiane
Detailed Energy	Energy Consumption	Daily	From 01/01/2018	Poste
Consumption				Italiane
Detailed Energy	Energy Consumption	Monthly	TBD	Poste
Consumption				Italiane
DL_102				
Total Active	Energy Consumption	Monthly		Poste
Energy consumption				Italiane
System Registry	Building Systems	At starting up and then	No Temporal Range	Poste
		occasionally, when		Italiane
		changes occur		

Employees Number	Occupancy	Monthly	From 01/01/2018	Poste Italiane
---------------------	-----------	---------	-----------------	-------------------

Pilot 3b – ROM Advanced Energy Management System and Spatial (Multi-Scale) Predictive Models in the Smart City

Pilot 3b – ROM Advanced Energy Management System and Spatial (Multi-Scale) Predictive Models in the Smart City

KPI N°01						
KPI-Name	Total Energy Savings (TES)		KPI-ID	ROM_Kpi_R01a		
	[kWh / Y]					
	Derived: Total Energy Cost Saving	s (TECS)		ROM_Kpi_R01b		
КРІ-Туре	Technical - <u>Energy Savings</u> and <u>En</u>	Technical - <u>Energy Savings</u> and <u>Energy Cost Savings</u>				
Description	The analysis and the improved ma	inagement of	the mete	rs data (historical and current) will		
	produce a series of measures and interventions ("EVENTS") that should reduce the yearly total energy consumptions, such as dismission of un-useful meters, maintenance and interventions on buildings following some anomalies detection, contractual re-definition resulting from Platoon analysis, other measures impacting on behaviours.					
	Component indicators are the <u>Total Energy Savings</u> in terms of Gas (TES-G) and in terms Electricity (TES-E), that gives a better picture of the impact of Platoon services. TeS can be applied also to different reference or analysis period different from Year. This KPI calculates for example the difference between the energy consumption before after reference EVENTS.					
	It is always necessary to explicit th This subset can range from n.1 me		-	refereed to an instance calculation ers/buildings		
Target Value	1 % =relevant; 2 % =good; 3 % =very good; Over 3% =excellent	hreshold Val	lue	1 %		
Rounding	% round off to 0% for values between 0.00 and 0.49 and to 1% for values above					
Unit	[Kilowatt (KWh) / year] for TES	; [Euro /y	ear] for	TECS		

Formula	$TES_{\underline{Y}} = TES_{G} + TES_{E}$					
	$TES_{AY} = \underline{TES}_{A} = \underline{TES}_{E} + \underline{TES}_{G}$					
	Ref.period Ref. period					
	rESY = Total Energy Saving (for one full year)					
	TES _F = Forecasted value (calculated for 1 full year after the event, including future periods)					
	TES _{Av} = Actual value normalized on 1 full year					
	TES _A = Actual value (sum of the measured savings from the EVENT time to last data available, when total period is different from 1 year)					
	EVENT time = the date of the intervention / action / event					
Calculating frequency	On demand Monthly					
Calculation Meth	odology					
Step	Description					
01	Select the time range = Ref. Period (year) ; default is 1 (year)					
	I.e 1 month = 1/12; 18 months = 18/12					
	Select/identify/Set the EVENT time, in order to verify which period covered by data is available after this EVENT time. Ref.Period is set to this period					
02	Select the specific building(s) and the perimeter of calculation:					
	Total energy consumption for District / Area buildings					
	or					
	Total energy consumption for Specific building(s)					
03	Select the Energy typology:					
	Electric (power meters)					
	or					
	Gas (gas meters or kWh derived from contatermie dataset)					
	Or Both					

04	Calculate energy saving for selected typology/building(s) comparing consumption related to one full year before the EVENT (ECb) and consumptions after the EVENT (ECa) (normalized if necessary to one full year) : ECa – ECb = TES					
05	Calculate % as TES / ECk Note: repeat for TECS u		Mb			
Data Source	Note. Tepeat for TECS a	sing Euro instead of ki	////			
Data			Data collection time	Data Owner		
description		frequency	range			
Building Calendar	Building Data	Monthly	TBD			
Total Electric Energy consumption	Energy Consumption	Monthly	TBD	ROM		
Total Gas Energy consumption	Energy Consumption	Monthly	TBD	ROM		
Detailed Energy Consumption	Energy Consumption (electric or gas)	Monthly (daily if using connectors)	ftbd	ROM		
Detailed Energy Costs	Energy Costs (electric or gas)	Monthly (daily if using connectors)	TBD	ROM		

KPI N°02					
KPI-Name	Saving Personnel Costs		KPI-ID	ROM_Kpi_R02a	
	Saving Other Costs			ROM_Kpi_R02b	
КРІ-Туре	Technical		•		
Description	The installation of a mon	itoring system shall re	educe the	costs for the personnel.	
	This KPI-02a is calculated from the difference of the saved personnel costs (per year) and the depreciation amount of the data monitoring system.				
	The KPI-02b is calculated listing other (than KPI02a) costs saved through the use of Platoon toolbox.				
	Kpi_R02a and Kpi_R02b o Energy Saving	can be summed. Bot	h exclude	costs saving derived by the Direct	
Target Value	20%	Threshold Val	ue	15%	
Unit	% on Euro [per year]				

Formula	SPC = <u>(CS - CD)</u> x 100
	CA
	CS= Personnel cost saving, based on the calculation of the avoided yearly worked days
	CD = depreciation amount of the data monitoring system in the same year
	C_A = Actual value of the personnel cost for the specific functions and tasks covered by toolbox (before Platoon implementation)
	Note: the calculation has to be extended to the personnel directly involved or impacted indirectly by the toolbox usage.
Calculating	Monthly
frequency	

KPI N°03							
KPI-Name	Nb of Meters with Energy Saving	s Results	KPI-ID	ROM_Kpi_R03			
	(Nb of Meters)						
КРІ-Туре	Technical - <u>Energy Savings</u> and (Counting Interv	l ventions				
Description	This indicator counts the numb	er of energy m	eters for v	vhich PLATOON data analytics tools			
	produce some action resulting in energy saving during the year.						
	Another Derived KPI: KPI01/KPI	Another Derived KPI: KPI01/KPI03					
	represents the average energ intensity of the single EE interv			olved, and measures the average			
Target Value	Non relevant <1	Threshold Va	lue	>10 =good;			
	Up to 10 =relevant;						
	11-30 =good;						
Unit	Natural Number						
Formula	Counting occurences						
Calculating frequency	On demand Monthly						

Calculation	Methodology
Step	Description
01	Select the time range = Ref. Period (year) ; default is 1 (year)
	I.e 1 month = 1/12; 18 months = 18/12
	Select/identify/Set the EVENT time, in order to verify which period covered by data is available after this EVENT time. Ref.Period is set to this period
02	Select the specific building(s) and the perimeter of calculation:
	Total meters for District / Area buildings
	or
	Total meters for Specific building(s)
	It is always necessary to explicit the subset of buildings refereed to an instance calculation. This subset can range from n.1 energy meter to all meters (all buildings)
03	Select the Energy typology:
	Electric (power meters)
	or
	Gas (gas meters or kWh derived from contatermie dataset)
	Or Both
04	Calculate the number of meters, in the above defined perimeters or set, that produced an energy saving output to be considered as a toolbox result.
	repeat for different energy typology if requested

KPI N°04							
KPI-Name	Nb of Anomalies detected	KPI-ID	ROM_Kpi_R04				
КРІ-Туре	Technical - Economical						
Description	The definition of Anomaly for a specific energy meter is based on the occurrence of the consumption divergence from the expected value (benchmark analysis), in the same period. This divergence could concern the EC (but could be applied also to the EP or to the Costs).						

	The Divergence is determined indicator.	by the users who	en defining	the specific	rule-set	for	the
Target Value	10 =relevant; 11-20 =good;	Threshold Value		>10			
Unit	Natural Number						
Formula	counting of the occurrence						
Calculating frequency	Monthly						

KPI N°05							
KPI-Name	CO2 emission reduction		KPI-ID	ROM_Kpi_R05			
КРІ-Туре	Technical						
Description		The avoided CO2 emission corresponding to the results in terms of Energy Savings (KPI-01 deriving from or correlated to the use of Platoon Toolbox					
Target Value	Same of KPI-01	Threshold Va	lue	Same of KPI-01			
Unit	gCO2 (divide per 1.000.00	0 for TonsCO2)		1			
Formula	Same Formula and calculation used for KPI-01 then Multiply kWh obtained per 258,63 for gCO2 (divide per 1.000.000 for TonsCO2) NOTE: Conversion Factor for Italy- Rome & Power Energy (258,63 g CO2/kWh) For Gas consumptions savings use Conversion Factors defined by ISPRA at current date						
Calculating frequency	Monthly						

KPI N°06						
KPI-Name	RES suggested self-consumptions	KPI-ID	ROM_Kpi_R06a			
	RES potential production (REC)		ROM_Kpi_R06b			
КРІ-Туре	Technical					

Description	Suggested self-consumptions energy for optimized PV plant installable on roofs						
	Or maximum RES production that can be installed on the roof when planning a PV plant w the REC (Energy Communities) scheme, where also the exceeding energy is shared with o proximity meters.						
Target Value	Over 130.000 =relevant; Up to 400.000 =good; Up to 800.000 =very good; over 1.200.000 =excellent	Threshold Value	>400.000				
Unit	(kWh/years)						
Formula	Pv Potentialities service (S04) offers a series of output, for each building with PV plants, based on the load curves (updated periodically), on the availability of irradiated surfaces to install more PV modules, their tilt/orientation, BOD (using PV-GIS JRC model). It includes the calculation of (A) the self-consumption energy component ROM_Kpi_R06a And						
	(B) The maximum RES produ	uction ROM_Kpi_R06	5b				
	Sum (A) or (B) for all the buildings analyzed. It is possible to limit the analysis to a district perimeter or to a subset of public build the choice of the operator.						
Calculating frequency	On Demand or Monthly						

KPI N°07							
KPI-Name	Nb of Tools Outputs or occurrences from Toolbox log	KPI-ID	ROM_Kpi_R07				
КРІ-Туре	Technical - Behavioral	Technical - Behavioral					
Description	Measuring the usage, this KPI personnel.	Counting outputs for each distinct services and tools will help to address further					
Target Value	Over 100 =relevant; over 200 =good;	Threshold Value	>200				

	over 400 =very good; over 600 =excellent
Unit	Natural Number
Formula	counting of the occurrence for a period or 1 year Calculated counting the outputs coming from the Platoon Toolbox for Pilot-3b-ROM during the user test phase (12 months). Extracted from Toolbox internal log.
	Can be limited to one specific service or to the whole toolbox.
Calculating	Monthly or Yearly
frequency	

KPI N°08				
KPI-Name	Nb of Tools Outputs or occurrences from Toolbox log		KPI-ID	ROM_Kpi_R08
КРІ-Туре	Technical - Behavioral			
Description	Vote assigned by the Test Users a	-		
	each services a for each of the T It can be recalculated each tin services. The Questionnaire presenting t	7 assessment cr ne a group of he 7 rating crite ty improvemen	users or po eria is acco	ere 10 Officers assigned a vote for otential users intends to rate the mpanied also by few questions for Id turn the services more suitable
Target Value	Target: >6	Threshold Val	ue	>5
Unit	Natural Number - Range [0 – 10]			
Formula	There are 7 assessment criteria	to rate separat bility, Usefuln	ely: ess, Use	ssociation Section of the toolbox) Frequency estimated, Workflow ct on Energy Efficiency
Calculating frequency	Monthly or Yearly			

Pilot 3C Energy Efficiency and Predictive Maintenance in the Smart Tertiary Building Hub Grade

LLUC-3C-01

KPI N°1						
KPI-Name	Integration			KPI-ID	2	
КРІ-Туре	Technical			1		
Description	Metric targeted at the va together. This includes: -Semantic pipeline: PLATO -Data Connectors with lega -IDS connector between G -IDS connector with Broke -Data Analytics Tools	ON data mode acy databases, iroa and Tecna	els mappi sensors, alia	ing		
Target Value	1	Th	reshold \	/alue	1	
Rounding	Not applicable					
Unit	Binary 1 or 0					
Formula	If all tools to complete the other then this KPI is 1. Ot	•		re able to in	teract an	d send data to each
Calculating frequency	At each pipeline release					
Calculation Met	hodology					
Step	Description					
01-	based on unit tests the inp	out-output fun	ctioning	of each pipe	ine is vali	idated.
02	Test data is exchanged bet	tween the pilo	t analytic	cs blocks		
Data Source	1					
Data description	Data source	Data col frequency	lection	Data co time range	ollection	Data Owner
Test data	Energy consumption/generation data, energy price data, meteo data and operational parameters.	Mins		2021-2022		Giroa

KPI N°2

KPI-Name	Energy Bill reduction			KPI-ID	2	
KPI-Type	Business					
Description	The KPI will evaluate the e	norau hill r	aduction of	hiouad		
Description		nergy bin i	eduction at	illeveu		
Target Value	20% reduction		Threshold	provement compared prrent situation is y useful.		
Rounding	first decimal					
Unit	% and euros					
Formula	(Current energy bill (euros)- New ene	ergy bill(eur	os))/ Curren	t energy b	bill (euros)
Calculating frequency	Once per day					
Calculation Met	hodology					
Step	Description					
01-	Calculate the energy gener	ration and	consumptic	on forecast		
02	Calculate corrected ener selling/buying poll pricre	gy price t	taking into	account er	nergy pro	oduction excess and
03	Optimise HVAC on/off					
04	Calculate HVAC energy cor	nsumption				
05	Calculate energy bill taking	g into acco	unt outputs	from steps	2 and 4.	
Data Source	1					
Data	Data source	Data	collection		ollection	Data Owner
description		frequenc	У	time range		
Test data	Energy consumption/generation data, energy price data, meteo data and operational parameters.	Mins		2021-2022		Giroa

KPI N°3			
KPI-Name	RES utilization ratio	KPI-ID	3
КРІ-Туре	Technical		

Description	The KPI will evaluate the R	ES usage versus overa	Ill energy consumption	on.		
Target Value	30% increase	Threshold	farm	rocessing chain for a should be able to run standard server.		
Rounding	1 st decimal					
Unit	Percentage					
Formula	RES production usage/ ove	erall energy consumpt	ion			
Calculating frequency	Once per day					
Calculation Me	thodology					
Step	Description					
01-	Calculate the energy gener	Calculate the energy generation and consumption forecast				
02	Calculate corrected ener selling/buying poll pricre	gy price taking into	account energy pi	oduction excess and		
03	Optimise HVAC on/off					
04	Calculate HVAC energy cor	nsumption				
05	Calculate RES usage taking	; into account outputs	from steps 1 and 4.			
Data Source	I					
Data description	Data source	Data collection frequency	Data collectior time range	Data Owner		
Test data	Energy consumption/generation data, energy price data, meteo data and operational parameters.	Mins	2021-2022	Giroa		

LLUC-3C-02

KPI N°1			
KPI-Name	Health Monitoring	KPI-ID	KPI-01
Description	Monitoring the health status of each asset, using the PML (Pro Status) to 1 (Optimal Status).	ocess Mastery I	evel) indicator, in a range from 0 (Failure

Target Value	100 %	Thre	shold Value	0-100%
Unit	Percentage indicator, set p	oints, etc.		
Formula		grouped by time slots (for e		ng algorithms. From those models luated against the Digital twin.
	The correlation will be eva	luated in a range from 0 to	l as a FTL	
	PMLs: Energy Variator Starter Phase imbalanc Power Supply Communicatior Flow Meter Temp Out of ra Evaporator Ret Temp Increase Power consum Evaporator Out	e Is nge urn otion increase		
Calculating	Depending on the asset. Fr	om 4 to 24 hours		
frequency				
Calculation N	lethodology			
Step	Description			
01-	Define the PML Formula fo	or each asset		
02-	Monitoring the health stat	us according to the values o	f the variables and its assoc	ciated PML Value.
Data Source				
Data	Data source	Data collection frequenc	Data collection time ra	nge Data Owner
description Signals used as	Consolidated Data Base	Defined default tim	2	GIROA
input for the	with PLC and SCADA data	(every 15 min aprox.)		
models				

KPI N°2					
KPI-Name	Availability		KPI-ID	KPI-02	
Description	Availability of the asset over a period of time. Availability takes into account Availability Loss, which includes any events that stop planned production for an appreciable length of time (usually several minutes; long enough for an operator to log a reason). Used for OEE calculation.				
Unit	%				
Formula					
Calculating	Daily				
frequency					
Calculation N	lethodology				
Step	Description				
01-	Register events of unplanne	ed stops.			
02	Calculate the availability for	a determined period of time	by using the abov	e formula.	
Data Source					
Data	Data source	Data collection frequency	Data collection t	ime range	Data Owner
description					
Signals used as input for the models	Consolidated Data Base with PLC and SCADA data	Defined default time (every 15 min aprox.)			GIROA

KPI N°3	KPI N°3						
KPI-Name	Mean Time Between Failures	KPI-ID	KPI-03				
Description	Mean time between failures (MTBF) describes the expected	time between	two failures for a repairable system				
Unit	Hours						
Formula	MTBF = (Total Working Time – Total Breakdown Time) / Number of Breakdowns MTBF = Total Operational time / Number of Breakdowns						
Calculating	Daily						
frequency							
Calculation N	lethodology						
Step	Description						
01-	Acquire running operational time						

02-	Determine Number of brea	xdowns. Apply filters as neede	ed to exclude micro stops, min	i stops, or other criteria's
03-	Apply formula			
Data Source				
Data	Data source	Data collection frequency	Data collection time range	Data Owner
description				
Signals used as input for the models	Consolidated Data Base with PLC and SCADA data	Defined default time (every 15 min aprox.)		GIROA

KPI N°4					
KPI-Name	Maintenance Costs		KPI-ID	KPI-04	
КРІ-Туре	Business				
Description	is important to indicate the	n asset is the sum of the costs hat maintenance costs may b be achieving the lowest possik	be higher in some	assets that u	
Target	Not applicable	Threshold	l Value	Not applicab	le
Value					
Rounding	Not applicable	I			
Unit	Euros				
Formula	Sum of the maintenance co	osts of the equipment selected	for the use case.		
Calculating	Daily				
frequency					
Calculation N	/lethodology				
Step	Description				
01-		m integration with Prisma (CN iated to Work Orders related t			
02	Create total cost KPI associa	ated to the equipment			
Data Source					
Data	Data source	Data collection frequency	Data collection tir	me range	Data Owner
description					
Test data	Operational parameters.	Mins	2021-2022		Giroa

Maintenance log	Prisma	Daily	Daily	Giroa
data				

KPI N°5						
KPI-Name	Integration		KPI-ID	KPI-05		
KPI-Type	Technical					
Description	Metric targeted at the validation of the fact that the tools of this pilot are able to work together. This includes: -Semantic pipeline: PLATOON data models mapping -Data Connectors with legacy databases, sensors, edge computing devices -IDS connector between Sisteplant and Tecnalia -IDS connector with Broker and Marketplace -Data Analytics Tools					
Target	1	Thresho	ld Value	1		
Value						
Rounding	Not applicable			-		
Unit	Binary 1 or 0					
Formula	If all tools to complete the p it is 0.	If all tools to complete the pilot data analysis are able to interact and send data to each other then this KPI is 1. Otherwise it is 0.				
Calculating	At each pipeline release					
frequency						
Calculation N	lethodology					
Step	Description					
01-	based on unit tests the inpu	it-output functioning of eac	h pipeline is valida	ted.		
02	Test data is exchanged betv	veen the pilot analytics blo	cks			
Data Source	·					
Data	Data source	Data collection frequency	Data collection	time range	Data Owner	
description						
Test data	Energy consumption/generation data, energy price data, meteo data and operational parameters.	Mins	2021-2022		Giroa	

Pilot 4a Energy Management of Microgrids

LLUC P-4a-01

KPI N°1						
KPI-Name	Energy availability			KPI-ID	KPI-1	
КРІ-Туре	Technical (specific to the pilot use case)					
Description	Optimal energy consumption (increase in energy availability) – Optimization for renewable electricity generation Smart storage/generation					
Target Value	generation – value:100%	enewable Target	Threshold V		effective perform process:	
Rounding	the criteria for roundi for values between 0.	-				ulation, round off to 0%
Unit	%					
Formula	KPI ₀	$f_{01}(\%) = \frac{1}{n}$	$\max\left(\sum_{t=1}^{N}\right)$	$\sum_{t=1}^{N} P_{PV,t}$ $P_{PV,t}, \sum_{t=1}^{N} \sum_{t=1}$	$P_{load,t}$	· 100
Calculating frequency	Daily					
Calculation Met	hodology					
Step	Description					
01-	Daily measurements	of load cons	sumption, r	enewable er	iergy genei	ration and battery
02						
Data Source						
Data description	Data source	Data frequency	collection	Data collec range	tion time	Data Owner
Energy consumption	mySQL db	10 min		daily		PDM
Energy production	mySQL db	10 min		daily		PDM

KPI N°2

KPI-Name	Cost			KPI-ID	KPI-2		
КРІ-Туре	Technical (specific to the pilot use case)						
Description	Reduction of mair generation)	Reduction of maintenance effort and costs (optimization for renewable electricity generation)					
Target Value	Example: maintena	xample: maintenance cost Threshold Value 10%					
Rounding		the criteria for rounding the calculated values (Example : For % calculation, round off to 0% for values between 0.00 and 0.49 and to 1% for values above)					
Unit	%						
Formula		$KPI_{02}(\%) = \frac{\sum_{t=1}^{N} (P_{load,t} - P_{PV,t})}{\sum_{t=1}^{N} P_{load,t}} \cdot 100$					
Calculating	daily, montly						
frequency							
Calculation Met	hodology						
Step	Description						
01-	Daily measurement	ts of load con	sumption, ren	iewable ener	gy genera	tion and battery	
02							
Data Source							
Data	Data source	Data	collection	Data collect	ion time	Data Owner	
description		frequency	/	range			
Failure rate	mySQL db	10 min		daily		PDM	
Maintenance activity	mySQL db	10 min		daily		PDM	

KPI N°3					
KPI-Name	Forecast accuracy		KPI-ID	KPI-3	
КРІ-Туре	Technical (specific to the pilot use case)				
Description	Reduced forecasting errors (ger	neration and lo	ad forecast	t)	
Target Value	Example: forecating error – Target value:0%	Threshold Va	llue	The value used to assess the effectiveness/efficiency performance of the monitored process: 20%	

Rounding	None					
Unit	%	%				
Formula	Standard forecating e	Standard forecating error indicators, such as nRMSE, WMAE, EMAE, OMAE				
	KPI ₀₃ (%) :	$KPI_{03}(\%) = nRMSE = \frac{1}{\max(P_{m,t})} \sqrt{\frac{\sum_{t=1}^{N} (P_{f,t} - P_{m,t})^2}{N} \cdot 100}$				
		$\text{EMAE} = \frac{\sum_{t=1}^{N} }{\sum_{t=1}^{N} }$	$\frac{P_{f,t} - P_{m,t} }{\operatorname{ax}(P_{f,t}, P_{m,t})} \cdot 100$			
		ensemble approach," 2		asting improvement by ech, 2019, pp. 1-5, doi:		
Calculating	Daily, monthly, yearly	/				
frequency						
Calculation Meth	nodology					
Step	Description					
01-	Daily measurements	Daily measurements of renewable energy generation				
02	Comparison with rela	ted forecasting and er	ror measurement			
Data Source						
Data description	Data source	Data collection frequency	Data collection time range	Data Owner		
Energy consumption	mySQL db	10 min	daily	PDM		
Energy production	mySQL db	10 min	daily	PDM		
Production forecast	mySQL db	10 min	daily	PDM		
Solar nowcast	mySQL db / edge node?	10 min	daily	PDM		
Load forecast	mySQL db	10 min	daily	PDM		

KPI N°4			
KPI-Name	Realtime	KPI-ID	KPI-4

КРІ-Туре	Technical (specific to the pilot use case)					
Description	Ability to monitoring/analyze/optimize data and the system at real time rate (EMS with real- time processing)					
Target Value	100%	D0% Threshold Value 80%				
Rounding	the criteria for rounding the calculated values (Example : For % calculation, round off to 0% for values between 0.00 and 0.49 and to 1% for values above)					
Unit	%					
Formula	KPI ₀₄ (%) = $\frac{\sum_{t=1}^{N} (P_{m,t} - P_{f,t})^2 - \sum_{t=1}^{N} (P_{m,t} - P_{n,t})^2}{\sum_{t=1}^{N} (P_{m,t} - P_{f,t})^2} \cdot 100$					
Calculating frequency	Daily					
Calculation Me	thodology					
Step	Description					
Step 01-	-	nts of renewable energy ge	neration			
-	Daily measuremer	nts of renewable energy ge related forecasting and erro				
01-	Daily measuremer					
01-	Daily measuremer			e Data Owner		
01- 02 Data Source	Daily measuremen	related forecasting and erro	or measurement	e Data Owner		
01- 02 Data Source Data	Daily measuremen	related forecasting and erro	or measurement Data collection time	e Data Owner PDM		

PLATOON Common Components

KPI N°1						
KPI-Name	IDS Metadata Regis)Integration	try (Bo	ker/Appstore	KPI-ID	1	
КРІ-Туре	Technical					
Description	Metric targeted at the validation of the fact that the IDS Metadata Registry (Broker/Appstore) is able to work together with IDS connectors and Data Analytics Tools Dockers and Marketplace.					
Target Value	1		Threshold V	alue	1	
Rounding	Not applicable					
Unit	Binary 1 or 0					
Formula	If all tools to complete other then this KPI is 1	-	-	are able to	interact a	nd send data to each
Calculating	At each pipeline releas	se				
frequency						
Calculation Met	hodology					
Step	Description					
01-	based on tests the inp	ut-output 1	functioning of	each pipelin	e is valida	ted.
02	Test data is exchanged	between	the pilot analy	tics blocks/		
Data Source						
Data description	Data source	Data frequenc	collection Y	Data collect range	ion time	Data Owner
Each pilot will have its own dataset connected to IDS connectors.						

KPI N°2			
KPI-Name	DAPS Integration	KPI-ID	3
КРІ-Туре	Technical		
Description	Metric targeted at the validation of the fact th (not developed in PLATOON) is able to work to Metadata Registry and IDS Vocabulary Provide	ogether with	

Target Value	1	Threshold	Value 1			
Rounding	Not applicable	Not applicable				
Unit	Binary 1 or 0					
Formula	If all tools to complet other then this KPI is 1		is are able to interact	and send data to each		
Calculating	At each pipeline relea	se				
frequency						
Calculation Meth	nodology					
Step	Description					
01-	based on tests the inp	ut-output functioning	of each pipeline is valid	ated.		
02	Test data is exchanged	d between the pilot and	alytics blocks			
Data Source	I					
Data description	Data source	Data collection frequency	Data collection time range	Data Owner		
Each pilot will have its own dataset connected to IDS connectors.						

KPI N°3						
KPI-Name	Clearing House Integration		KPI-ID	4		
КРІ-Туре	Technical		I	•		
Description	Metric targeted at the validation of the fact that the Clearing House provided by Fraunhofer (not developed in PLATOON) is able to work together with PLATOON IDS connectors, IDS Metadata registry, DAPS and Marketplace.					
Target Value	1	Threshold Va	lue	1		
Rounding	Not applicable					
Unit	Binary 1 or 0	Binary 1 or 0				
Formula	If all tools to complete the pilot data analysis are able to interact and send data to each other then this KPI is 1. Otherwise it is 0.					
Calculating frequency	At each pipeline release					
Calculation Me	thodology					

Step	Description					
01-	based on tests the input-output functioning of each pipeline is validated.					
02	Test data is exchanged between the pilot analytics blocks					
Data Source						
Data	Data source	Data colle	ection	Data collection time	Data Owner	
description		frequency		range		
Each pilot will						
have its own						
dataset						
connected to						
IDS connectors.						

KPI N°4						
KPI-Name	PLATOON Marketplace	KPI-ID	5			
КРІ-Туре	Technical					
Description	Metric targeted at the	validation of the PL	ATOON Market	place is able	to work together with	
	PLATOON IDS Metadata Registry, DAPs and Clearning House.					
Target Value	1	Thresh	old Value	1		
Rounding	Not applicable	I				
Unit	Binary 1 or 0					
Formula	If all tools to complete the pilot data analysis are able to interact and send data to each other then this KPI is 1. Otherwise it is 0.					
Calculating	At each pipeline release					
frequency						
Calculation Met	hodology					
Step	Description					
01-	based on tests the input-output functioning of each pipeline is validated.					
02	Test data is exchanged between the pilot analytics blocks					
Data Source						
Data	Data source	Data collect	ion Data coll	ection time	Data Owner	
description		frequency	range			
Each pilot will						
have its own						

dataset		
connected to		
IDS connectors.		

KPI N°5						
KPI-Name	IDS Vocabulary Provider Integration			KPI-ID	2	
КРІ-Туре	Technical					
Description	Metric targeted at the validation of the fact that the IDS Vocabulary Provider is able to work					
	together with PLATOON datamodels repository, IDS connectors and DAPs.					
Target Value	1	Th	Threshold Value		1	
Rounding	Not applicable					
Unit	Binary 1 or 0					
Formula	If all tools to complete the pilot data analysis are able to interact and send data to each					
	other then this KPI is 1. Otherwise it is 0.					
Calculating	At each pipeline relea	se				
frequency						
Calculation Met	hodology					
Step	Description					
01-	based on tests the input-output functioning of each pipeline is validated.					
02	Test data is exchanged between the pilot analytics blocks					
Data Source						
Data	Data source	Data co	llection	Data collec	tion time	Data Owner
description		frequency		range		
Each pilot will						
have its own						
dataset						
connected to						
IDS connectors.						

References

ⁱⁱ Messinis, G. M., Rigas, A. E., & Hatziargyriou, N. D. (2019). A hybrid method for non-technical loss detection in smart distribution grids. *IEEE Transactions on Smart Grid*, *10*(6), 6080-6091

ⁱⁱⁱ Cochran, W.G. (1977) Sampling Techniques. 3rd Edition, John Wiley & Sons, New York.

ⁱ <u>https://www.servisinfo.com/cena-struje</u>