
Version 1 – Final. Date:30/12/2020

Grant Agreement N° 872592

Deliverable D8.1

Impact assessment of big data and advanced analytics for energy

services

Contractual delivery date: M12 Actual delivery date: 30th December 2020

> Responsible partner: P01: ENGIE, France

Project Title	PLATOON – Digital platform and analytic tools for energy
Deliverable number	D8.2
Deliverable title	Market and stakeholder analysis
Author(s):	Cs, ENGIE, ENGINEERING, MINSAIT, PUPIN, TECNALIA, VEOLIA
Responsible Partner:	P01 - ENGIE
Date:	30.12.2020
Nature	R
Distribution level (CO, PU):	PU
Work package number	WP8 – Business Models and Exploitation

Work package leader	IND
Abstract:	Digital transformation is having significant impact on the energy sector. The digital agenda in the energy sector is being driven by

	a combination of technologies, collection and use of data, and a more complex world demanding greater agility, speed, and digital competences. It is expected to impact all aspects of the energy
	sector, including changing patterns of consumption, new ways of optimizing assets, cross-industry partnerships, and the greater use of industrial platforms. Digital technologies and 'smart solutions' are being placed at the centre of new business models, and data is seen as an increasingly valuable asset. Therefore, T8.1 will focus on the opportunities to use big data, advanced analytics, and open data to solve problems faced by the energy sector today.
Keyword List:	Big data, digital platforms, impacts, energy sector, open data, Analytics tools.

The research leading to these results has received funding from the European Community's Horizon 2020 Work Programme (H2020) under grant agreement no 872592. This report reflects the views only of the authors and does not represent the opinion of the European Commission, and the European Commission is not responsible or liable for any use that may be made of the information contained therein.

Editor(s):	Cs, ENGIE, ENGINEERING, MINSAIT, PUPIN, TECNALIA, VEOLIA
Contributor(s):	Cs, ENGIE, ENGINEERING, MINSAIT, PUPIN, TECNALIA, VEOLIA
Reviewer(s):	Pau Joan Cortés Forteza Philippe Calvez Erik Maqueda-Moro
Approved by:	Philippe Calvez (ENGIE) – PLATOON Coordinator Erik Maqueda (TECN) – Technical Coordinator First Name Eduardo Jimenez (IND) – Exploitation Coordinator
Recommended/mandatory readers:	Pau Joan Cortés Forteza Philippe Calvez Erik Maqueda-Moro

Document Description

Version Date		Modifications Introduced	
version	Date	Modification Reason	Modified by
V0.1	04.11.2020	Section 1 – Introduction and Section 2 - Big Data challenges and opportunities in the energy sector	V. Janev
V0.2	16.11.2020	Section 2.2-2.8	J.Prieto Vivance, E.Jimènez Segado
V0.3	27.11.2020	Section 3. Potential Big data applications in the energy services	I.Matranga
V0.4	30.11.2020	Section 4 New business models	I.Matranga
V0.5	04.12.2020	Section-5: big data impact update	D.Carro
V0.6	04.12.2020	Section 6: PLATOON use cases and expected impacts	R.Pecqueur
V0.7	07.12.2020	Document consolidation	L.Bouchendouka
V0.8	08.12.2020	Conclusion and final details	L.Bouchendouka
V0.9	11.12.2020	Section 4 updates	I.Matranga
V0.10	12.12.2020	Final details, updates, and modifications	L.Bouchendouka
V0.10	14.12.2020	First review	P. Cortés Forteza
V0.10	21.12.2020	Second review	E.Maqueda-Moro
V1.0	29.12.2020	Corrections and final changes	L.Bouchendouka

Acknowledgements

The following people are hereby duly acknowledged for their considerable contributions, which have served as a basis for this deliverable:

Name	Partner
David CARRO SANTOME	Cs
Andrej Čampa	CS
Lilia BOUCHENDOUKA	ENGIE
Rémi PECQUEUR	ENGIE
Martino MAGGIO	ENGINEERING
Isabel MATRANGA	ENGINEERING
Prieto Vivanco, Juan	MINSAIT
Jiménez Segado, Eduardo	MINSAIT
Merino Blanco, Fernando	MINSAIT
Valentina JANEV	PUPIN
Maqueda Moro, Erik	TECNALIA
Gorka NAVERAN	VEOLIA

Executive Summary

This document lies under the scope of work package WP8- Business Models and Exploitation. Its content is based on the work of the Task 8.1 - Project Impact Assessment, led by ENGIE.

The deliverable D8.1-impact assessment of big data and advanced analytics for energy services- focuses on an important topic within the PLATOON project, the definition of opportunities using big data, advanced analytics, and open data to solve problems faced by the energy sector today. Those are an important element that will allow the project consortium to evaluate the impacts of the different services and functionalities to be provided by PLATOON platform as well as assumptions are.

The impact expected to be created within PLATOON is based on the synergistic effect of activities initiated in WP2 to WP6 framework, as is presented in Figure 1 below. Data integration activities in WP2 focuses on common data models and standardization through a technology-agnostic approach to be compliant with very different technologies. WP3 will deliver data governance, security and privacy framework along with open-source IDS components that will further improve the interoperability and sovereign data exchange between different energy sector stakeholders. Furthermore, WP3 will create the PLATOON marketplace, a one-stop shop where energy sector stakeholders can share data and tools maintaining security, privacy and sovereignty. Analytical components delivered in WP4 framework for batch and real-time processing will feature standard interfaces and easy integration with existing energy management systems. The developed prototype applications will be validated in seven large scale pilots, organised in 3 groups: 1) Predictive maintenance for wind-energy, 2) Smart grid management, 3) End use of the energy) will ensure that the PLATOON will make impact in all parts of the energy value chain.

Altogether, this impact assessment will be used in later project phases to ensure proper verification and validation of the PLATOON project.

Table of Contents

	E SUMMARY	. 6
TABLE OF	CONTENTS	. 7
LIST OF FI	GURES	. 8
LIST OF T	ABLES	. 9
TERMS A	ND ABBREVIATIONS	10
1. INTE	RODUCTION	11
1 1 PI A	TOON PROJECT OVERVIEW	11
1.2 Овј	ECTIVE AND SCOPE OF THE IMPACT ASSESSMENT OF BIG DATA AND ADVANCED ANALYTICS FOR ENERGY SERVICES	11
1.3 Rel	ATION TO OTHER DELIVERABLES	12
2. BIG	DATA CHALLENGES AND OPPORTUNITIES IN THE ENERGY SECTOR	13
2.1 Big	DATA DIMENSIONS	13
2.2 DAT	A VALUE GENERATION: DISTRIBUTED DATA VALUE	15
2.3 The	CHALLENGE OF DATA VALUE ENCAPSULATION AND INTEROPERABILITY.	16
2.4 PLA	TOON USE CASES AND DATA CATEGORIZATION	17
	TOON USE CASES AND BIG DATA ANALYTICS -CHALLENGES AND OPPORTUNITIES	
	NDARDIZATION	
	RIERS TO THE IMPLEMENTATION OF BIG DATA IN THE ENERGY DOMAIN	
2.8 Bus	INESS IN THE ENERGY SECTOR	24
3. POT	ENTIAL BIG DATA APPLICATIONS IN THE ENERGY SERVICES	24
4. NEW	/ BUSINESS MODELS	
5. BIG		26
5. DIG	DATA IMPACTS ON THE ENERGY SERVICES	-
5.1	DATA IMPACTS ON THE ENERGY SERVICES	28
		28 29
5.1	ENERGY EFFICIENCY	28 29 29
5.1 5.2 5.3	Energy efficiency Unavailability	28 29 29 30
5.1 5.2 5.3	ENERGY EFFICIENCY UNAVAILABILITY OTHER IMPACTS FOON USE CASES AND THE EXPECTED IMPACTS	28 29 29 30 30
5.1 5.2 5.3 6. PLA	ENERGY EFFICIENCY UNAVAILABILITY OTHER IMPACTS	 28 29 29 30 30 30
5.1 5.2 5.3 6. PLA	ENERGY EFFICIENCY UNAVAILABILITY OTHER IMPACTS FOON USE CASES AND THE EXPECTED IMPACTS PLATOON KPIS	 28 29 29 30 30 30 30 34
5.1 5.2 5.3 6. PLA 6.1 6.2	ENERGY EFFICIENCY UNAVAILABILITY OTHER IMPACTS FOON USE CASES AND THE EXPECTED IMPACTS PLATOON KPIS PILOT 1A: PREDICTIVE MAINTENANCE OF WIND FARM	 28 29 29 30 30 30 34 35
5.1 5.2 5.3 6. PLA 6.1 6.2 6.3	ENERGY EFFICIENCY UNAVAILABILITY OTHER IMPACTS FOON USE CASES AND THE EXPECTED IMPACTS PLATOON KPIS PILOT 1A: PREDICTIVE MAINTENANCE OF WIND FARM PILOT 1A: PREDICTIVE MAINTENANCE OF WIND FARM PILOT 2A: ELECTRICITY BALANCE AND PREDICTIVE MAINTENANCE	 28 29 29 30 30 30 34 35 37
5.1 5.2 5.3 6. PLA 6.1 6.2 6.3 6.4	ENERGY EFFICIENCY UNAVAILABILITY OTHER IMPACTS FOON USE CASES AND THE EXPECTED IMPACTS PLATOON KPIS PILOT 1A: PREDICTIVE MAINTENANCE OF WIND FARM PILOT 1A: PREDICTIVE MAINTENANCE OF WIND FARM PILOT 2A: ELECTRICITY BALANCE AND PREDICTIVE MAINTENANCE PILOT 2B ELECTRICITY GRID STABILITY, CONNECTIVITY, AND LIFE CYCLE	 28 29 29 30 30 30 34 35 37 41
5.1 5.2 5.3 6. PLA 6.1 6.2 6.3 6.4 6.5	ENERGY EFFICIENCY UNAVAILABILITY OTHER IMPACTS FOON USE CASES AND THE EXPECTED IMPACTS PLATOON KPIS PILOT 1A: PREDICTIVE MAINTENANCE OF WIND FARM PILOT 2A: ELECTRICITY BALANCE AND PREDICTIVE MAINTENANCE PILOT 2B ELECTRICITY BALANCE AND PREDICTIVE MAINTENANCE PILOT 2B ELECTRICITY GRID STABILITY, CONNECTIVITY, AND LIFE CYCLE PILOT 3B OFFICE BUILDING: OPERATION PERFORMANCE THANKS TO PHYSICAL MODELS AND IA ALGORITHMS PILOT 3B ADVANCED ENERGY MANAGEMENT SYSTEM AND SPATIAL (MULTI-SCALE) PREDICTIVE MODELS IN THE SMART C	 28 29 29 30 30 30 34 35 37 41 111
5.1 5.2 5.3 6. PLA 6.1 6.2 6.3 6.4 6.5 6.6	ENERGY EFFICIENCY	 28 29 29 30 30 30 34 35 37 41 11TY 46

List of Figures

FIGURE 1 : FROM INNOVATION, VIA STANDARDIZATION TO DEPLOYMENT	6
FIGURE 2 : FROM INNOVATION, VIA STANDARDIZATION TO DEPLOYMENT	
FIGURE 3 SOURCES OF NON-ELECTRICAL BIG DATASET IN SMART GRIDS	15
FIGURE 4 BIG DATA FUNNEL IN A HYBRID CLOUD/EDGE DISTRIBUTED ARCHITECTURE	16
FIGURE 5 SMART GRID STANDARDS CATEGORIES	20
FIGURE 6 TOP ANALYTICS CHALLENGES	23

List of Tables

TABLE 1 REFERENCE STANDARDS FOR SMART ENERGY GRIDS	19
TABLE 2 PLATOON VS ANALYTICAL CHALLENGES	23
TABLE 3 BIG DATA ANALYTICS PRODUCTS NEW BUSINESS MODELS	28
TABLE 4: EXPRESSED IMPACTS AND ASSOCIATED KPIS	33
TABLE 5 PILOT 1A: PREDICTIVE MAINTENANCE OF WIND FARM KPIS AND EXPECTED IMPACTS	35
TABLE 6 PILOT 2A: ELECTRICITY BALANCE AND PREDICTIVE MAINTENANCE KPIS AND EXPECTED IMPACTS	37
TABLE 7 PILOT 2B ELECTRICITY GRID STABILITY, CONNECTIVITY, AND LIFE CYCLE KPIS AND EXPECTED IMPACTS	41
TABLE 8 PILOT 3A OFFICE BUILDING: OPERATION PERFORMANCE THANKS TO PHYSICAL MODELS AND IA ALGORITHMS	s KPIs
AND EXPECTED IMPACTS	44
TABLE 9 PILOT 3B ADVANCED ENERGY MANAGEMENT SYSTEM AND SPATIAL (MULTI-SCALE) PREDICTIVE MODELS I	N THE
SMART CITY KPIS AND EXPECTED IMPACTS	46
TABLE 10 PILOT 3C ENERGY EFFICIENCY AND PREDICTIVE MAINTENANCE IN THE SMART TERTIARY BUILDING HUBG	RADE
KPIS AND EXPECTED IMPACTS	47
TABLE 11 PILOT 4A ENERGY MANAGEMENT OF MICROGRIDS KPIS AND EXPECTED IMPACTS	48

OT	Operational Technology	
P2P	Peer-to-peer	
IoT	Internet of thinks	
AI	Artificial intelligence	
ML	Machine Learning	
DL	Deep Learning	
IT	Information Systems	
SG	Smart Grid	
RES	Renewable Energy Sources	
B2C	Business to consumer	

1. Introduction

1.1 PLATOON project overview

Over the past years, the topics of Big Data¹, Linked Data², Open Data³, and Smart Data⁴ have spawned a tremendous amount of attention among scientists, software experts, industry leaders and decision makers. This amount of data that is created on daily bases creates new opportunities for modern enterprises, especially for using the latest advancements in analytics for analysing the industry value chains in a broader sense. The Energy Big Data framework of the modern smart energy networks provides an ideal ecosystem for Utilities' data knowledge generation. Big Data provides the opportunity to better monitor, correct, and integrate smart grid technologies and renewable energy. At the same time, data management and utilization must be integrated into the organization's operations to maximize business value.

Hence, the ambition of PLATOON project is to deploy distributed/edge processing and data analytics technologies for optimized real-time energy system management in a simple way for the energy domain expert. The project will build upon European standards and initiatives for managing the pilots' data, for the access, models, interfaces, governance, and sovereignty. The data governance among the different stakeholders for multi-party data exchange, coordination and cooperation in the energy value chain will be guaranteed through IDS (Industrial Data Space)-based connectors. The project will develop and use the PLATOON reference architecture, COSMAG-compliant, for building and deploying scalable and replicable energy management solutions that contribute to increased renewable energy demand, smart grids management, increased energy efficiency and optimised energy asset management.

1.2 Objective and scope of the Impact assessment of big data and advanced analytics for energy services

In PLATOON WP8 (Business Models and Exploitation) framework, the Task 8.1 focuses on the opportunities of using big data, advanced analytics, and open data to solve problems faced by the energy sector today. Some of the **high-level impacts expected from deployment of PLATOON services** across Europe are as follows:

- Effective integration of relevant digital technologies in the energy sector resulting in integrated value chains.
- Enhancing energy asset management, increasing consumer participation and innovative network management, creating new data-driven business models and opportunities and innovative energy services.
- Contribution to increasing the use of renewable energy and increased energy efficiency based on optimised energy asset management, offering access to cheaper and sustainable energy for energy consumers and maximising social welfare.

¹ D. Laney, Laney, D.: 3D data management: controlling data volume, velocity, and variety. Application Delivery Strategies, Meta Group (2001)

² Bizer, C., Heath, T., & Berners-Lee, T. (2009). Linked data – The story so far. In T. Heath, M. Hepp, M., & Bizer, C. (Eds.), *Special Issue on Linked Data, International Journal on Semantic Web and Information Systems*, 5(3), 1-22.

³ Wided Medjroubi, Ulf Philipp Müller, Malte Scharf, Carsten Matke, David Kleinhans (2017) Open Data in Power Grid Modelling: New Approaches Towards Transparent Grid Models,

Energy Reports, Volume 3, Pages 14-21, https://doi.org/10.1016/j.egyr.2016.12.001.

⁴ http://traces.cs.umass.edu/index.php/Smart/Smart

- Improving availability of big data and big data management & analysis facilities for real life scale research, simulation, and test purposes.
- Increased in standards for data sharing, exchange, and integration.

1.3 Relation to other deliverables

The impact expected to be created within PLATOON is based on the synergistic effect of activities initiated in WP2 to WP6 framework, as is presented in Figure 1 below. Data integration activities in WP2 focuses on common semantic data models and standardization through a technology-agnostic approach to be compliant with very different technologies. WP3 will deliver data governance, security, and privacy framework along with open-source IDS components that will further improve the interoperability and sovereign data exchange between different energy sector stakeholders. Furthermore, WP3 will create the PLATOON marketplace, a one-stop shop where energy sector stakeholders can share data and tools maintaining security, privacy, and sovereignty. Analytical components delivered in WP4 framework for batch and real-time processing will feature standard interfaces and easy integration with existing energy management systems. The developed prototype applications will be validated in seven large scale pilots, organised in 3 groups making impact in all parts of the energy value chain.:

- 1) Predictive maintenance for wind-energy,
- 2) Smart grid management,
- 3) End use of the energy

Figure 2 : From innovation, via standardization to deployment

2. Big Data challenges and opportunities in the energy sector

In the **energy sector**, the new paradigm of smart grids that includes renewable energy sources, storage, and efficiency from its broadest point of view, challenges the existing network infrastructure and legacy information systems (IT).

The management and use of data generated from the different components of the power system are critical to the successful implementation and operation of the system.

Here, the processes of energy generation, transmission, distribution, and demand must be concurrently monitored and analysed to assure system stability without brownouts or blackouts.

Modern transmission systems (grids) in developed countries that transport electricity are in general very large and robust infrastructures with extensive deployment of monitoring and control equipment. Novel Internet of Things (IoT) sensors and actuators are pushing this monitoring and control capabilities into the lower levels of the grid even into connected customers' homes.

Such reliability and extended monitoring and control capability is key to ensure the efficiency and stability of the power system, one of the most critical infrastructures in any country.

2.1 Big Data dimensions

The energy sector has been dealing with big data for decades, as tremendous amounts of data are collected from numerous sensors, which are generally attached to different plant subsystems on the production side or metering equipment and sensors that provide key insights into load distribution. However, the term "Big Data" became more popular and used also in energy sector discussions after the definition of Big Data (3Vs) create by Gartner group in 2001:

Big data" is **high-volume**, **velocity**, and **variety** information assets that demand costeffective, innovative forms of information processing for enhanced insight and decision making⁵.

Many different definitions have emerged over time⁶, but in general, it refers to "datasets whose size is beyond the ability of typical database software tools to capture, store, manage, and analyse"⁷ and technologies that address "data management challenges" and process and analyse data to uncover valuable information that can benefit businesses and organizations. Additional "Vs" of data have been added over the years, see Table below.

Table 1. Big Data characteristics

⁵https://www.forbes.com/sites/gartnergroup/2013/03/27/gartners-big-data-definition-consists-of-three-parts-not-to-be-confused-with-three-vs/?sh=424b6c3142f6

⁶ V. Janev, D. Graux, H. Jabeen, E. Sallinger (Eds.) Knowledge Graphs and Big Data Processing. Lecture Notes in Computer Science vol. 12072, pp. 1-208. Springer International Publishing. ISBN 978-3-030-53198-0. DOI: <u>https://doi.org/10.1007/978-3-030-53199-7</u>

⁷ J. Manyika. Big data: The next frontier for innovation, competition, and productivity. The McKinsey Global Institute, pages 1|-137, 2011.

Volume	Vast amount of data that must be captured, stored, processed, and displayed.
Velocity	Rate at which the data is being generated or analysed.
Variety	Differences in data structure (format) or differences in data sources themselves (text, images, voice, geospatial data).
Veracity	Truthfulness (uncertainty) of data, authenticity, provenance, Accountability.
Validity	Suitability of the selected dataset for a given application, accuracy, and correctness of the data for its intended use.
Volatility	Temporal validity and fluency of the data, data currency and availability, and ensures rapid retrieval of information as required.
Value	Usefulness and relevance of the extracted data in making decisions and capacity in turning information into action.
Visualization	Data representation and understandability of methods (data clustering or using tree maps, sunbursts, parallel coordinates, circular network diagrams, or cone trees).
Vulnerability	Security and privacy concerns associated with data processing.
Variability	The changing meaning of data, inconsistencies in the data, biases, ambiguities, and noise in data.

Big data in the energy domain (even greater now with the introduction of smart grids) are heterogeneous, with varying resolution, mostly asynchronous, and are stored in different formats (raw or processed) at various locations. For example, typical smart meter data are energy demand collected every 15 minutes and are stored in billing centres. One million smart meters installed in a utility results to nearly 3 TB of new energy demand data every year⁸.

⁸ Big Data Analytics in Smart Grids: State-of-the-Art, Challenges, Opportunities, and Future Directions. IET Generation, Transmission and Distribution · February 2019

Figure 3 Sources of non-electrical big dataset in smart grids

These big data carry considerable amount of information that enables novel Data Driven control algorithms. This in turn can bring revolutionary transformations to the way grids are planned and operated. Big data in the energy sector allows improvisation in existing operation and planning practices at all levels, i.e., generation, transmission, distribution, and end users⁹. The key challenge of big data analytics is to turn large volume of raw data into actionable information by effectively integrating into power system operational decision frameworks¹⁰.

2.2 Data value generation: distributed data value.

Power systems are currently managed using central data processing architectures and technologies.

Based on this centralizing approach the increasing need for broader and deeper sensing and control of the generation and grid assets is increasing at an exponential rate the **volume** of data over which utilities need to gain insights and react at an increasing **velocity** to generate **value** thus fully plunging utilities in the **Big Data**.

When faced with thousands, if not millions, of measurement and control points as it would be the case of power grids (down to Low voltage), current centralized data processing approach starts losing efficiency and facing serious limitations:

- More than 80% of the information sent for central processing has little, if any value, but cannot be directly discarded until processed.
- Communications are used to their limit, and available bandwidth consumed with data that may not be valuable.
- Cost for central processing and data processing increases exponentially.
- Reaction times to all this massive influx of data is continually increasing, thus limiting the value of Big data.

The continuous lowering of the cost of industrial computing equipment and the deployment of new distributed IoT/Edge architectures provides, in a unique manner, answers to the Big Data Challenge posed to Power companies.

These impacts and benefits of distributed big data mirror those of distributed generation in the power system, creating bottlenecks and loss of efficiency when centrally managed and

⁹ K. Zhou, C. Fu, and S. Yang, "Big data driven smart energy management: From big data to big insights," Renewable and Sustainable Energy Reviews, vol. 56, pp. 215–225, 2016

¹⁰ J. Hu and A. V. Vasilakos, "Energy big data analytics and security: challenges and opportunities," IEEE Transactions on Smart Grid, vol. 7, no. 5, pp. 2423–2436, Sep. 2016

increasing flexibility, reliability, efficiency, and capacity when the management architecture mimics its distributed nature.

The combination of Central & Cloud computing with distributed Fog & Edge computing, if correctly coordinated, creates a hybrid central/distributed architecture where:

- 1. Big data is processed incrementally in layers from the source, ensuring that only valuable data is exploited.
- 2. Data intelligence is optimally distributed along the data chain. Analytics is placed at the closest point to the asset or the system over which value needs to be generated, thus simplifying the access to relevant data, and maximizing reaction times.
- 3. **Communication data processing and storage is optimized** as only relevant data with maximum value and minimum volume needs to be managed.

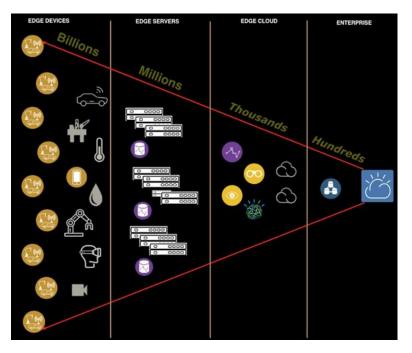


Figure 4 Big Data funnel in a hybrid Cloud/Edge distributed architecture

The challenge

2.3

of data value encapsulation and interoperability.

The ambition of PLATOON project is to deploy distributed/edge processing and data analytics technologies to optimize the operation of the real-time energy system management.

To achieve this target is key to define a standard framework to encapsulate, communicate and manage in a distributed architecture different data analytic module thus increasing the efficiency and reliability of renewable generation resources, the grid and demand.

The moment that assets are managed through "networks" of distributed analytics that could involve hundreds if not thousands of data Analytic agents in coordination, a distributed architecture should standardize the way those analytics are encapsulated, communicated, managed, and distributed.

Virtualization (Virtual machines, containers of serverless functions) is the leading strategy in the IoT domain, that PLATOON will apply to allow this encapsulation of analytic functions in the power domain.

Even though there are a few standard information models for smart grid interoperability (e.g., IEC 61850, IEC 61850-90-7, IEC 61970/61968, IEEE 1815, IEEE 2030.5), there is no standard information models to describe interoperability among various big data analytics platforms, architecture, and their operational integrations with utility decision frameworks. Furthermore, storage, usage, dissemination, and sharing of data with utility operational frameworks are not unified. Interoperability between various cloud computing service vendors is necessary. Therefore, extensive R&D is needed to develop interoperability among different devices, network operations, data analytics platforms, big data architecture, data repository, and information models.

2.4 PLATOON use cases and data categorization

While companies in the past used to process static data, centrally stored, and collected from various sources, with the birth of the web and cloud services, cloud computing is rapidly overtaking the traditional in-house system as a reliable, scalable and cost-effective IT solution. The high volumes of structured and unstructured data stored in a distributed manner, and the wide variety of data sources pose problems related to data/knowledge representation and integration, data querying, and business analysis. To specify the needs of PLATOON Pilot applications (delivered in WP6 framework), in the project preparation phase, the available datasets were analysed and categorized in accordance with the 3Vs (Volume, Variety and Volume). For more information about the data sources and integration, please check deliverable D2.4.

2.5 PLATOON use cases and Big Data Analytics -Challenges and Opportunities

2.6 Standardization

In the report published by CEN-CENELEC-ETSI Coordination Group on Smart Energy Grids (CG-SEG) in January 2017¹¹, reference standards for smart energy grids are listed for the domain of advanced Distribution grid operation systems.

PLATOON solutions would have to comply with this list of standards mainly focused in the interoperability between sensors, controls and systems

Layer	Standard	Comments		
	IEC 61869	Measurement transformers & sensors		
	IEC 62271 series	High-voltage switchgear and control gear		
Communications	IEC 61968-100	Application integration at electric utilities System interfaces for distribution management - Part 100: Implementation profiles		
Communications	IEC 62351 (all parts)	Cyber-security aspects (refer to section 9.4)		
Communications	EN 61970 (all parts)	Some issues will be relevant of this family of		
& information		standards but focus on this family of standards		
		is on transmission		
Communications	IEC/EN 61850 (all			
& information	parts)			
Communications	IEC 60870-5-101	Remote control		
Communications	IEC 60870-5-102	Measure		

¹¹ SEGCG/M490/G_Smart Grid Set of Standards Version 4.1, 06/01/2017

Communications	IEC 60870-5-103	Protection and control
Communications	IEC 60870-5-104	Remote control
Communications	IEC 61158 series	Field buses
Communications	IEC 61400-25	Wind farms
Communications	IEC 61588 (IEEE 1588)	Time synchronization (PTP)
Communications	IEC 62056-5-3	DLMS / COSEM
Communications	IEC 62351 series	Cybersecurity
Communications	IEC 62361 series	Data Models (CIM)
Communications	IEC 62488-1 (Formerly EN60663) - Part 1	PLC
Communications	IEEE 1901	Broadband PLC
Communications	ISO/IEC 12139-1	MAC layer
Communications	ISO/IEC 14908	Network control
Communications	ISO/IEC 15118	V2G
Communications	ISO/IEC 15802 IEEE 802.1	Data exchange between systems
Communications	ISO/IEC 7498-1	OSI reference model
Communications	ISO/IEC 8802-3	Data exchange between systems
Communications	ITU-T G.7042	Link capacity tuning scheme for virtual concatenated signals
Communications	ITU-T G.707	Network node interface for synchronous digital hierarchy
Communications	ITU-T G.709	Interfaces for the optical transport network
Communications	ITU-T G.783	Characteristics of the functional blocks of the synchronous digital hierarchy equipment
Communications	ITU-T G.798	Characteristics of the functional blocks of the optical transport network hierarchy equipment
Communications	ITU-T G.803	Architecture of transport networks based on the synchronous digital hierarchy
Communications	ITU-T G.872	Architecture of optical transport networks
Communications	ITU-T G.983.1	Broadband optical access systems based on passive optical networks
Communications	ITU-T G.983.2	control and management interface of optical network terminals for passive broadband optical networks
EMC	IEC 61000 Series	EMC, Environmental, Mechanical
EMC	IEC 61326	Electrical material for measurement, control and laboratory use.
General	EN 61968-1	Application integration at electric utilities - System interfaces for distribution management - Part 1: Interface architecture and general requirements

General	IEC 62357	Reference architecture power system information exchange				
General	ISO/IEC 27001	Information security				
General	ISO/IEC 27002	Information security				
Information	EN 61968-11	Application integration at electric utilities - System interfaces for distribution management - Part 11: Common information model (CIM) extensions for distribution				
Information	EN 61968-13	Application integration at electric utilities - System interfaces for distribution management - Part 13: CIM RDF Model exchange format for distribution				
Information	EN 61968-2	Application integration at electric utilities - System interfaces for distribution management - Part 2: Glossary				
Information	EN 61968-3	Application integration at electric utilities - System interfaces for distribution management - Part 3: Interface for network operations				
Information	EN 61968-4	Application integration at electric utilities - System interfaces for distribution management - Part 4: Interfaces for records and asset management				
Information	EN 61968-6	Application integration at electric utilities - System interfaces for distribution management - Part 6: Interfaces for maintenance and construction				
Information	EN 61968-8	Application integration at electric utilities - System interfaces for distribution management - Part 8: Interface Standard For Customer Support				
Information	EN 61968-9	Application integration at electric utilities - System interfaces for distribution management - Part 9: Interfaces for meter reading and control				
Information	IEC 62361-100	CIM profiles to XML schema mapping				

Table 1 reference standards for smart energy grids

The previous list of standards focused on smart grid control systems is completed with a set of cybersecurity standards, evolved from existing industrial cybersecurity standards.

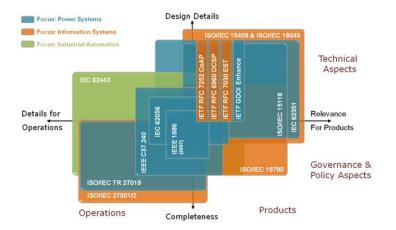


Figure 3: Cybersecurity standards : CEN-CENELEC-ETSI Smart Grid Coordination Group (2014)

Among the most notable for its orientation to Smart Grid or international presence are the following:

- IEC 62351
- IEEE 1686
- IEC 62443
- IEC 27019 ISO/IEC 27001
- NISTIR 7628 Guidelines for Smart Grid Cyber Security
- NERC CIP: Critical Infrastructure Protection
- Common Criteria (ISO/IEC 15408)
- CEN/CENELEC/ETSI: Smart Grid Information Security

All of them have common points, some being more general and others being more focused on devices, operations, design, or processes.

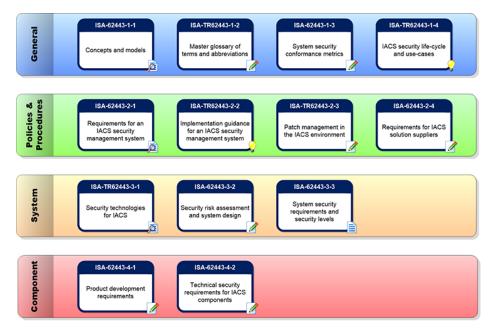


Figure 5 Smart grid standards categories

Many of the mentioned standards cover most of the aspects that can be found from the device to the Edge, central control centres and the cloud as in the case of IEC62351 and IEEE1686 or section 4 of IEC62443.

IEC62443 however, also covers aspects related to the union of the OT (Operational technology) world with IT (information technology), establishing cybersecurity practices that could be extrapolated to the Cloud.

2.7 Barriers to the implementation of Big Data in the Energy domain

The systems in the electricity sector need to improve in many aspects, one of them would be an internal problem of the company itself and is the collection of the data and the processing thereof. In many cases, they lack all the data (or at least many of them) recorded by the smart meters, thus making the task of data processing and analysis difficult. This translates to administrative errors on the part of the company.

A normative and legal reform in the Electricity Sector would also be necessary, especially the use of meters would allow to improve the integration of renewable energies for end users who have solar panels, allowing in addition to the generation of their own electricity, a control of the same by registering the data, as well as the visualization of the energy generated during demand peaks.

The business of electric companies is to sell energy and there is a direct relationship between the energy they sell and their profits. Therefore, it is difficult for a power utility to decide to promote energy efficiency that will reduce demand or flexibility services that will optimize the use of existing infrastructure thus reducing grid investment.

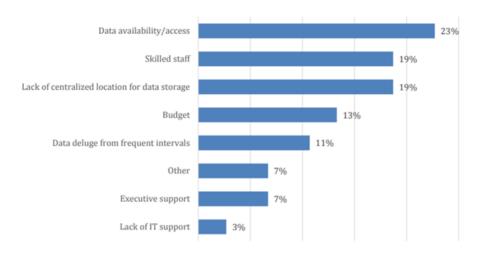
To overcome this obstacle new policies are required to incentivize Power Utilities to digitalize their infrastructure and enable a more active participation of grid users (generation and demand) in the power system operation.

The implementation of intelligent automatic systems enables Utilities to extend their realtime knowledge and control to lower and lower levels in the grid. As mentioned in previous sections the massive amount of data potentially actionable and the need to understand and respond very fast to this massive data is proving to be a very significant obstacle in current centralized architectures and a challenge to bid Data technologies.

Finally, a large initial investment is required in new infrastructures (sensors, smarter systems, more powerful and faster processors) will make many companies rethink their implementation.

This general challenges in the power sector poses at the following specific barriers that the exploitation of PLATOON technologies will have to solve to materialize the impacts identified:

- Skills:
 - There are comparatively few people who can apply big data management and analytics knowledge together with domain know-how within the sectors.
- Interpretation:
 - Implicit or tacit models are in the heads of the (retiring) skilled workers.
 Scalable domain model extraction becomes key, e.g., in traffic management systems rule bases grow over years to unmanageable complexities.
- Digitization has not yet reached the tipping point:
 - Digitization and automation of infrastructure require upfront investments, which are not well considered, if at all, by the incentive regulation by which


infrastructure operators are bound. Real-time higher-resolution data is still not widely available.

- Uncertainty regarding digital rights and data protection laws:
 - Unclear views on data ownership hold back big data in the end user facing segments of the energy and transport sectors (e.g., smart metering infrastructure).
- "Digitally divided" European union:
 - Europe has fragmented jurisdiction when it comes to digital rights.
- "Business-as-usual" trumps "data-driven business":
 - In established businesses it is very hard to change running business value chains. Incumbents will need to deal with a lot of changes: change in the existing long innovation cycles, change to walled garden views of closed systems and silos, and a change in the mind-set so that ICT becomes an enabler if not a core competency in their companies.
- Missing end user acceptance:
 - In the energy sector it is often argued that people undervalue the potential of energy usage data. However, when missing end user acceptance of a technology is argued, it is more a statement that a useful service using this technology is not yet deployed.
- Missing trust:
 - Trust is an issue that could and should be remedied with technology data protection and with regulatory framework (i.e., appropriate privacy protection laws)¹².

In the following figure you can see which are the major obstacles to the implementation of analytics in the energy sector.

Topping the list is data availability / access (23%), closely followed by qualified staff and the lack of a centralized location for data storage, which were identified as a top challenge by 19% of respondents. Only 13% considered budgeting the number one challenge for their current analytics projects. Together, these findings indicate that the biggest hurdles for 60% of the market can be traced back to the current state of the data itself and the dearth of people who know what to do with it.

¹² Rusitschka, S., and Curry, E. 2016. Big data in the energy and transport sectors. In *New Horizons for a Data-Driven Economy*, pp. 225-244. Springer, Cham.

Figure 6 Top analytics Challenges ¹³

In the following table you can see how the project addresses each of these obstacles to facilitate the introduction of analytical techniques in the energy sector (How PLATOON responds to these barriers).

BARRIERS	PLATOON ANSWERS
Data availability/access	Open API and adoption of common data models in the domain of Energy and Big Data. PLATOON will build a Data Governance component based on IDS which ensures that the data is shared and utilized according to the specific agreements signed by the different stakeholders
Skilled staff	Data Analytics toolbox provides modular and accessible solutions to the energy domain expert in an easy way and to be used in solving their different problems.
Lack of centralized location for data storage	Thorough an interoperability layer based on open APIs and open data models based on existing standards that will enable the effective communication amongst different platforms.
Budget	Using Open-source platforms and systems like FIWARE and SANSA or open-source CKAN extensions providing a data portal with monetization capabilities
Data deluge from frequent intervals	Development of hybrid models from physical models of equipment and calibrated through error minimization techniques with operational data towards the digital twin.
Executive support	Through the dissemination activities of the project where the benefits that the proposed architecture can provide to their businesses will be explained in detail, for example a marketplace of additional services to their usual businesses.
Lack of IT support	Promoting software as a service it is no needed to install and maintain it locally. Table 2 PLATOON vs Analytical Challenges

Table 2 PLATOON vs Analytical Challenges

¹³ The Current State of Smart Grid Analytics. Utility Analytics Institute.2017

2.8 Business in the energy sector

The following section examines the dimensions of big data in energy to identify the needs of businesses and end users with respect to big data technologies and their use.

The data from the energy sector come from high and medium voltage substations, although it is expected that in a very short time an avalanche of information from the new digitization of secondary substations, in a network infrastructure where distribution and marketing have been separated (unbundled)

The information can come in the form of service reports of maintenance work performed by field personnel, asset monitoring sensors, measurement and control devices, smart meters (readings and alarms), and high-resolution real-time data from phasor measurement units synchronized with GPS, etc.

The estimated annual data volume would be 1.8 billion records or 120 TB of raw data. A second wave will include granular data from smart appliances, electric vehicles, and other measurement points across the network. That exponentially increases the amount of data that is generated ¹⁴.

This massive volume of raw data will need to be analysed and filtered in real time to identify potential threads to the power system reliability or efficiency, generating control actions in time horizons ranging from 1 ms to 1 minute.

Energy flexibility and efficiency services needs to be agreed and dispatched in ranges from 1 second to hours.

Incumbent OT are unable to manage these massive data volumes creating a market that is expected to grow more than 75% over the next years.

3. Potential Big data applications in the energy services

The innovations brought by big data are changing the landscape of traditional energy industry and are going to support in addressing several challenges the energy sector is facing nowadays as for example: managing operational efficiency and cost control, providing system stability and reliability, manage renewable energy, improve energy efficiency to tackle environmental issues, improve consumer services.

One of the main examples of big data application is in the sector of smart grids which produce an enormous amount and various types of data (e.g., data on electricity demand or on device status). In this environment big data analytics can provide effective and efficient decision support for all the stakeholders involved from the producers, to the operators, from the customers to the regulators.

¹⁴ B Laperche, F Picard, Environmental constraints, Product-Service Systems development and impacts on innovation management: learning from manufacturing firms in the French context, Journal of Cleaner Production, 2013

The application of data analysis techniques, as for example optimization, forecasting, classification, and clustering can in fact support:

- optimization of power generation and operation.
- integration of RES generation.
- prediction of electricity demand.
- discovery of electricity demand patterns.
- development of effective dynamic pricing mechanisms.
- detection of failures supporting prompt restore.

There have already been many successful application cases of big data analytics in the energy sector, one example is Google's DeepMind¹⁵ technology which through the application of algorithms was able to increase the effectiveness of Google's customers' data centres' cooling systems by 30%. Other big players have also been working extensively in energy predictions by using machine learning and bid data. IBM for example has over 200 partners and clients that use their solar and wind forecasting technology. The technology integrates massive data sources and applies forecasting models to calibrate and improve efficiency and reliability¹⁶. Below we provide some of the main examples of application of big data in the energy sector.

Power generation and planning

Power generation planning and economic load dispatch can be considered as two of the most important decision-making processes in power generation. In simple terms, economic load dispatch is matching power supply with the demand for energy from the grid over a short period of time at the lowest possible cost subject to transmission and distribution constraints. Matching energy supply and demand on the network has always been a challenge. Through the application of different analytics techniques (e.g., prediction of electricity demand, discovery of demand patterns) to the enormous amount of data collected, power generation and planning can be optimized, energy production efficiency can be significantly improved, and the production costs can be greatly reduced.

Renewable energy management

Power generation and planning, seen above, become even more challenging when renewable energy is fed into the grid. The scarcity of fossil fuels and ecological transition are increasing the need and dependency on alternate sources of energy, such as solar and wind which are inevitably significantly affected by weather conditions. Feeding renewable energy into the power grid with incomplete information about individual power generation facilities can lead to volatility in load flow that is difficult to forecast. It has become imperative to use big databased analytical tools, to understand the behaviour or adaption of these sources of energy; in fact, through massive weather data analysis forecasts the power generation can become more accurate and efficient. Furthermore, by merging various sources of data e.g., energy production and demand data with GIS data and weather data, renewable power generation devices can be selected more efficiently to improve power output and energy efficiency and overloads can be prevented at an early stage preventing costly re-dispatching.

¹⁵ https://deepmind.com/

¹⁶ Digitalisation of New Business Models in the Energy Secotr, University of Cambridge, June 2019

Demand side management

On the demand side management big data analytics can be applied for several purposes such as load forecasting, load classification and consumers segmentations, dynamic pricing and to apply demand response programmes. In a domain where the competition is strong an efficient demand side management can be considered as one of the means to improve loyalty and satisfaction of customers providing power companies the opportunity to maintain their market share and gain new ones. Existing systems such as Meter Data Management Systems, customer information systems, geographic information systems, and other data sources such as weather are analysed to offer targeted signals to Demand Response customers. Data analytics techniques can offer locational-based dispatch capabilities to the utilities and support the improvement of grid reliability.

Maintenance of machinery and equipment monitoring

Big data analytics can also play an important role in the maintenance of machinery and in the monitoring of equipment. Different approaches to machinery maintenance have been developed in the past years and data analytics today represents the opportunity for the energy sector to advance its procedures making them more efficient through predictive maintenance. Instead of waiting for a piece of equipment to fail (reactive maintenance) or perform regular maintenance checks (preventive maintenance) predictive maintenance enables the evaluation of the condition of the equipment by performing periodic or continuous (online) equipment condition monitoring. The goal of predictive maintenance is to perform maintenance at the time when the activity would be most cost-effective and before the equipment loses performance within a threshold. Effective predictive maintenance is only possible if it can leverage multi-sources of data coming from different systems e.g., Manufacturing Execution Systems, Building Management System, and the Energy Management System.

4. New business models

Digitalization in the energy sector is opening the way to the development of new business models. At the heart of disruption in business modelling in the energy sector is the use of technologies like blockchain, big data and analytics and the development of the P2P energy sharing concept. P2P is a novel paradigm of power system operation where grid-connected parties can generate their own energy, usually through Renewable Energy Sources (RESs) and share it with each other locally¹⁷. P2P business models are still not very common due to the rigid energy market structures and regulatory frameworks¹⁸ based on the B2C model we are all a acquainted with. Besides the technology-based advances, the business model transformation in the energy sector is driven also by the "collaborative economy" principle which is transforming energy customers into more proactive customers i.e., "prosumers" who have production and storage capabilities and can share the electric energy they produce¹⁹.

¹⁷ Review of Existing Peer-to-Peer Energy Trading Projects, Chenghua Zhang, Jianzhong Wu, Chao Long, Meng Cheng, May 2017

¹⁸ A Novel Peer-to-Peer Energy Sharing Business Model for the Portuguese Energy Market, Lurian Pires Klein, Aleksandra Krivoglazova, Luisa Matos, Jorge Landeck and Manuel de Azevedo, December 2019

¹⁹ Peer-to-peer and community-based markets: A comprehensive review, Tiago Sousaa, Tiago Soaresb, Pierre Pinsona, Fabio Moreta, Thomas Barochec, Etienne Sorina, April 2019

In the last decade, many new products and services governed by innovative business models have entered the energy market thanks to the use of big data and analytics²⁰. Some examples are depicted in the table below.

Company	Value proposition	Customers	Value delivery
name			
Adaptricity www.adaptric ity.com	A cloud-based grid analytics platform which allows distribution grid operators to better understand, operate and plan their electric grid infrastructure using data- driven grid analysis. This allows for significant cost savings in grid operation, grid maintenance, grid planning and asset management.	Distribution grid operators	 Adaptricity offers four databased software solutions: Adaptricity.Plan for grid planning Adaptricity.Sim for timeseries based grid analysis and planning Adaptricity.Mon for continuous distribution grid monitoring
EQuota Energy equotaenergy .com	An energy intelligent management service provider. Based on AI and Big Data, it provides energy efficiency optimization, operation and maintenance monitoring, carbon emission management, energy planning, electricity sales services, micro-grid services and other industrial chain technology solutions.	Commercial and residential customers	EQuota Energy offers EQuota Insight for smart energy management services based on AI algorithm model and data processing technology. A light version of the solution is also available called EQuota InsightLite.
Fresh Energy www.getfresh .energy	A customer-centric solution that analyses data collected from smart meters to enable utilities in providing enhanced services and high customer experience	Utilities	Fresh Energy offers a plug&play, customer centric, hardware agnostic solution. It analyses the data from customer's Smart Meters using complex algorithms, pattern recognition and machine learning, to identify how much power each consumer uses and how much that will cost them
BeeBryte	Al-driven optimization software for cooling &	Commercial and	BeeBryte offers a set of services which through AI minimise

²⁰ Digitalisation of New Business Models in the Energy Sector, University of Cambridge, June 2019

www.beebryt e.com	refrigeration systems enhancing operational efficiency, reliability and comfort generating up to 40% savings.	residential customers	utility bills with automatic control of heating-cooling equipment, pumps etc. If solar generation is present, it is used for maximising self-demand.
Jungle AI www.jungle.ai	A platform for renewable energy generation based on AI and Machine Learning. It promises to reduce unplanned downtime, react quickly by detecting faults early on.	Renewable energy assets owners	 Jungle AI offers two products/services: Canopy to reduce downtime by detecting impending failures ahead of time and to increase power output by detecting underperformance issues Power Forecasting to allow to reduce the cost of variability of the power output of large- scale wind- and solar farms.

Table 3 Big data analytics products new business models

5. Big Data impacts on the energy services

As stated in section 2, the processes throughout the energy value chain from generation to transmission and finally distribution are of key importance to ensure the energy usage and the availability of energy services for the prosumers.

The electric network is widely considered to be among the most critical infrastructure in the world, especially in advanced economies. In particular, the power sector is seen as uniquely critical for the "enabling function" it provides across all critical infrastructure sectors. Services like transport, finance and water supply are among the most highly dependent on the energy network and would be severely impacted in case of failure, leaving the population, in a word, vulnerable.

The electric grid, increasingly becoming more commonly known as smart grid, represents the backbone for many energy related services beyond the basic usage of the electricity, and so, ensuring the correct operation of all its assets, as well as protect them from external attacks has been one of the main concerns in the energy domain for the last years.

The benefits for the energy sector derived from the use of big data are diverse, implying huge economic impacts:

- Energy asset management
- Weather forecasting from historical data
- Reduce load intervention in the power grid
- Optimize smart grid operation and increase energy efficiency
- Ensure energy delivery and distribution to enable final services
- Improve service quality

- Analyse the utility industry
- Fault detection and advance warning
- Grid stabilization and management

There are several sources of data in smart grids, and important efforts and progress have been made for using the field data acquired from smart devices mounted in substations, feeders, etc... to enable the prediction of grid states, provide situational awareness, analyse grid stability, detect faults and provide advance warning. The major benefits of performing analytics include increased customer satisfaction, better resource utilization and improved quality of service. However, to conduct analytics, a proper data acquisition framework is required to collect, process, and analyse the data.

Analytics can be applied to signal, event, state, engineering operations, and customer analytics, in sum enabling high-level and detailed insights into grid situational awareness. There are several types of analytics models, namely descriptive, diagnostic, predictive, and prescriptive models. These can be applied for the smart grid, for instance, descriptive models describe customer behaviours for demand response programs. Diagnostic models are used to understand specific customer behaviours and analyse their power-related decisions. Each type of model can provide valuable input to create models that predict future customer decisions and hence, power needs. Finally, prescriptive models can provide high level analytics to influence smart grid marketing, engagement strategies and decision making. To further develop the main impacts related to the project, the implications of big data on the energy efficiency and unavailability are described in the following sections.

5.1 Energy efficiency

The impact of the Big data on energy services is very important because it allows us to generate digital twins which, thanks to the IoT and AI, allow us to develop and verify new energy efficiency measures before implementing them in the real pilot.

In addition, with the models generated, it allows us to make a change from a corrective and therefore traditional control system to a predictive system that adjusts not only to moments of lower production costs. It also allows us to overlap production curves with demand curves in the case of renewable energies.

It is a proven fact that ESCOs are investing more and more in techniques and technologies that allow us to centralise all the information and train models in different scenarios and even help us in the design phases of the installations.

As part of the PLATOON project, an exhaustive analysis of all the data from the pilots will be carried out to generate patterns that will allow us to carry out optimised energy management and optimise the demand of energy produced by renewable sources on site.

5.2 Unavailability

The feasibility of data to generate the models is fundamental in the previous and training phases and becomes less relevant as time goes by and with the models trained. Because thanks to the training carried out and provided that the results are comparable, the absence of data can be replaced with other data generated from the models.

The problem of the lack of data in the initial phases is very serious, when you still do not have models since all the conclusions, services or later developments can have a very high uncertainty falsifying the results.

We must consider that for systems based on big data to find correlations and be able to generate models or patterns, they must do so through statistical analysis, trends, artificial neural networks or decision trees and train with different time series to be able to generate reliable models. Therefore, all systems must have local backups that allow lost data to be recovered and allow the systems to work on an island.

5.3 Other impacts

The experience developed in other projects of the H2020 framework has shown us that it is feasible to achieve a reduction in energy demand of 20% through the application of techniques related to the Big data, since thanks to them it is possible to provide dynamism to the systems and to operate the installations in optimal operation points in a dynamic way according to the needs of the moment.

According to NIST²¹, the benefits of modernization of power grids are as high as five times the one-time development cost²². Initial assessments by the American Council for an Energy-Efficient Economy predict the use of information and communication technology (ICT) and smart appliances would save about \$80 billion in America's annual electricity bill²³.

6. PLATOON use cases and the expected impacts

While section 5 of the document focused on the impact of big data on the energy services and its implications on the energy efficiency and unavailability, this section focuses on measurable impacts of PLATOON use cases regarding each one of its seven pilots. The approach is to move from the use cases to measurables indicators of the impact.

An overview of PLATOON business KPIs is first provided, then, the low-level use cases (from D1.1 Business case definition, requirements and KPIs report- expected) expected impacts and related KPIs are presented.

6.1 PLATOON KPIs

The following table provides an overview of the KPIs that have been provided on the project technical agreement and listed from 1 to 6 as expressed impacts. The impacts numbers 5 and 6 are not categorized as business impacts but as consortium impacts. The impact "Increased in standards for data sharing, exchange and integration" is part of WP8.5 delivery and the impact "Emergence of sustainable ecosystems around digital platforms and strengthened links with other programs and initiatives, supported by regional, national and European policies and funds" is part of WP7 & WP9 deliveries.

²¹ https://www.nist.gov

²² National Institute of Standards and Technology, "Strategic R&D Opportunities for the Smart Grid: Advancing Measurement Science and Standards for Smart Grid Technologies," pp. 1-36, 2013, [Online] Available: http://www.nist.gov/smartgrid/upload/Final-Version-22-Mar-2013-Strategic-R-D- Opportunities-for-the-Smart-Grid.pdf.

²³ J.A. Laitner, M.T. McDonnell and K.E. Martinez, "The Energy Efficiency and Productivity Benefits of Smart Appliances and ICT Enabled Networks: An Initial Assessment," American Council for an Energy-Efficiency Economy (ACEEE), 2014. [Online] Available: http://aceee.org/research-report/f1402.

Version 1 – Final. Date:30/12/2020

Expressed Impacts	Impacts sub level 1	KPI sub level 1	Impacts sub level 2	KPI sub level 2	Impacts sub level 3	KPI sub level 3	Impacts sub level 4	KPI sub level 4
1. Effective integration of	1.1 Effective	KPIs:	1.2 Efficient	KPI:				
relevant digital	integration of	1)100% successful	business	10%				
technologies in the	relevant digital	integration testing	processes	improvement of				
energy sector, resulting in	technologies in	(deliverable D5.5).		existing business				
integrated value chains	the energy	2) Number of large-		processes in				
and efficient business	sector resulting	scale pilots where the		terms of time,				
processes of the	in integrated	reference architecture		cost, process				
participating	value chains	is implemented (target		effectiveness, etc.				
organizations		value: 7).						
2. Enhancing energy asset	2.1 Enhance	KPIs:	2.2 Increasing	KPI:	2.3 Innovative	KPI:	2.4 Creating	KPI:
management, increasing	asset	1) Number of detected	consumer	10% increase of	network	Accuracy	new data-	10% revenue
consumer participation	management	events - Target: predict	participation	new contract	management	increase	driven	increase due to
and innovative network		equal or more failures		schemes that		compared to	business	new data driven
management, creating		compared to current		reward flexible		the current	models,	business models
new data-driven business		techniques.		capacity.		algorithms.	opportunities,	and services.
models and opportunities							and	
and innovative energy							innovative	
services							energy services	
3. Contribution to	3.1 Increasing	KPI:	3.2 Increased	KPI:	3.3 Cheaper	KPIs:	3.4 Carbon	
increasing the use of	the use of	1) 10% increase in	energy	15% energy	and	1) 20% savings	reduction	
renewable energy and	renewable	effective utilization of	efficiency	savings compared	sustainable	in energy cost.	reduction	
increased energy	energy	available RES.	enterency	to the current	energy for	2) 20% saving in		
efficiency based on	chergy	2) Reaction time -		baseline.	consumers	CO2 emissions.		
optimised energy asset		Target: predict failures		buschne.	and	coz crinistions.		
management, offering		50% earlier compared			maximising			
access to cheaper and		to current techniques.			social welfare			
sustainable energy for		3) False Positives -						
energy consumers and		Target: generate less						
maximising social welfare		false positives than						
		current techniques.						

PLATOON

Version 1 – Final. Date:30/12/2020

4. Improving availability	KPIs:		
of big data and big data	1) N. of available		
management & analysis	generic big data tools		
facilities for real life scale	in the data analytics		
research, simulation, and	toolbox consumed in		
test purposes	pilots - Target Value: 4.		
	2) N. of available		
	energy specific tools in		
	the data analytics		
	toolbox consumed in		
	pilots- Target Value:		
	10.		
5. Increased in standards	KPI: Number of		
for data sharing,	contributions to		
exchange, and	existing standards-		
integration.	Target value: 8.		
6. Emergence of	KPIs:		
sustainable ecosystems	1) Nº Additional		
around digital platforms	supportive partners		
and strengthened links	engaged - Target		
with other programmes	Value: 20		
and initiatives, supported	2) № Ambassadors		
by regional, national, and	engaged - Target		
European policies and	Value: 6		
funds.	3) № of collaboration		
	with external		
	exploitation partners:		
	20.		
	4) Number of		
	collaborations with		
	other regional,		
	national and European		
	programmes - Target		
	Value: 50.		

PLATOON

Table 4: Expressed Impacts and associated KPIs²⁴

In the next sub chapters, each sub-impact has been processed over all pilots based on the 4. KPI that are described are either technical or business. To keep a better understanding of the business value and on its score, we kept the technical and mark for some of them the direct or indirect relation with the business impact.

Please note:

- Table 4 is identified numbered objectives that will have to be rationalized and compared during the RUN phase on each pilot.
- Only the KPIs highlighted in green are considered as business KPIs.

PLATOON

²⁴ PLATOON GA
²⁴ D1.1 Challenges/ Business case definition

		Key performa	nce indicators			Business Impacts
	K	ey performance	indicators LLUC P-2a-01 F	Predictive mai	ntenance of	wind Farm
ID	Name	Business achievement	Description	Reference to mentioned use case objectives	expected impact	Description
1	Modeling quality	Maintenance costs; Increase of RES usage; Detection	Modelling approach capable to fit healthy component data	0.1	high	 1.1 Effective integration of relevant digital technologies in the energy sector resulting in integrated value chains 1.2 Efficient business processes 2.4 Creating new data-driven business models, opportunities, and innovative energy services
2	Integration	Maintenance costs; Availability / Increase of RES usage	Tool interaction/integration	0.1, 0.2	low	 1.1 Effective integration of relevant digital technologies in the energy sector resulting in integrated value chains 1.2 Efficient business processes
3	Detection	Availability	Anomaly detection speed + accuracy (false vs true positives)	0.2	high	3.3 Cheaper and sustainable energy for consumers and maximizing social welfare
4	Load characterization	Increase of RES usage	Important historical loading events can be captured using automated methods	0.4	low	 1.1 Effective integration of relevant digital technologies in the energy sector resulting in integrated value chains 4. Improving availability of big data and big data management & analysis facilities for real life scale research, simulation and test purposes
5	Processing reach	Maintenance costs Availability / Increase of RES usage	Size of fleet dataset that can be analyzed automatically: number of turbines, channels,	0.1, 0.2	middle	1.2 Efficient business processes
6	Processing speed	Maintenance costs	Speed of the anomaly analysis	0.2	middle	 1.2 Efficient business processes 1.1 Effective integration of relevant digital technologies in the energy sector resulting in integrated value chains
7	Maintenance costs		Maintenance cost reduction	O3, 04	high	1.1 Effective integration of relevant digital technologies in the energy sector resulting in integrated value chains1.2 Efficient business

6.2 Pilot 1a: Predictive maintenance of wind farm

PLATOON

Page 34 of 49

					processes 2.1 Enhance asset management 2.4 Creating new data-driven business models, opportunities and innovative energy services
8	Availability / Increase of RES usage	Increase availability of Wind Turbines (increase RES usage)	O3, 04	high	 1.1 Effective integration of relevant digital technologies in the energy sector resulting in integrated value chains 1.2 Efficient business processes 2.4 Creating new data-driven business models, opportunities and innovative energy services 3.0 Contribution to increasing the use of renewable energy efficiency based on optimized energy asset management, offering access to cheaper and sustainable energy for energy consumers and maximizing social welfare 4. Improving availability of big data and big data management & analysis facilities for real life scale research, simulation, and test purposes 3.4 Carbon reduction

Table 5 Pilot 1a: Predictive maintenance of wind farm KPIs and expected impacts

6.3 Pilot 2a: Electricity balance and predictive maintenance

	Key performance indicators				l	Business Impacts	
	Key performance indicators LLUC P-2a-01- LLUC P-2a-07						
ID	Name	Business achievement	Description	Reference to mentioned use case objectives	expected impact	Description	
КРІ- 1	Improved forecasting accuracy		Deployment of new forecasting models (artificial intelligence methods and neural networks, hybrid models)	LLUC P-2a- 03 LLUC P-2a- 04		1.2 Efficient business processes	
KPI- 2	Savings from tertiary		Increase the annual net savings from tertiary	LLUC P-2a- 01	high	2.3 Innovative network management	

	reserve trading		eserve trading, see CIGRE 2020[i]			
KPI- 3	Better demand response		Responding better to hanges in demand	LLUC P-2a- 01 LLUC P-2a- 02 LLUC P-2a- 03	high	2.4 Creating new data- driven business models, opportunities, and innovative energy services 1.1 Effective integration of relevant digital technologies in the energy sector resulting in integrated value chains 4. Improving availability of big data and big data management & analysis facilities for real life scale research, simulation, and test purposes
КРІ- 4	Improved RES integration	e	Better evaluation of the Effects from RES ntegration	LLUC P-2a- 02 LLUC P-2a- 05	middle	 1.1 Effective integration of relevant digital technologies in the energy sector resulting in integrated value chains 3.1 Increasing the use of renewable energy 3.4 Carbon reduction
KPI- 5	Balanced energy mix		Reduction in peak use of ossil fuels	LLUC P-2a- 02 LLUC P-2a- 04	middle	3.2 Increased energy efficiency3.1 Increasing the use of renewable energy3.4 Carbon reduction
KPI- 6	Curtailment avoidance		Percentage of curtailment avoidance	LLUC P-2a- 04 LLUC P-2a- 05	middle	3.2 Increased energy efficiency1.2 Efficient business processes
KPI- 7	Portfolio optimization	0 R ((0 S	mproved portfolio optimization of Balance Responsible Parties Optimization/Management of Renewable Energy Systems)	LLUC P-2a- 04	high	3.2 Increased energy efficiency
KPI- 8	Saving costs	n fi b	The installation of the machine learning algorithm for detection of abnormal behavior shall reduce the maintenance costs.	LLUC P-2a- 07	high	1.1 Effective integration of relevant digital technologies in the energy sector resulting in integrated value chains 1.2 Efficient business processes 2.1 Enhance asset management 2.4 Creating new data- driven business models, opportunities and

PLATOON

Page 36 of 49

					innovative energy services
KPI- 9	Increased stability	Increased degree of stability in the real power plant operation.	LLUC P-2a- 05 LLUC P-2a-	high	1.2 Efficient business processes
КРІ- 10	Metadata models	Number of metadata specifications prepared and registered with CKAN related to the data that will be used in the analytical services	07 LLUC P-2a- 06		

Table 6 Pilot 2a: Electricity balance and predictive maintenance KPIs and expected impacts

6.4 Pilot 2b Electricity grid stability, connectivity, and life cycle

	I	Key performance		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Business Impacts
ID	Name	Business achievement	Description	Reference to mentioned use case objectives	expected impact	Description
	Key performanc	e Indicators LLU	e for MV/LV	Transformers-virtual sensor		
1	Temperature estimation accuracy (%)	Savings (€) Additional Costs (€) Anticipation time (days)	Hourly temperature accuracy estimation based on estimated temperature (ET) and actual (measured) temperature (AT) for top oil: (ET- AT)/AT (%)			
	Key per	formance indica	tors LLUC P-2b- 01 - I	Predictive Main	tenance for	MV/LV Transformers
1 2	True positives (TP)	Savings (€) Additional Costs (€) Anticipation time (days)	Number of anomalies detected with early warnings and confirmed with a corrective work order			
3	False positives (FP)	Savings (€) Additional Costs (€) Anticipation time (days)	Early warnings with no associated corrective work order			

4	False	Savings (€)	Corrective work			
	negatives	Additional	order without a			
	(FN)	Costs (€)	previous early			
		Anticipation	warning			
		time (days)				
5	5 True Savings (€)		No early warning			
	Negatives	Additional	and no work order			
	(TN)	Costs (€)				
	. ,	Anticipation				
		time (days)				
6	Specificity	Savings (€)	Proportion of true			1
, v	(%)	Additional	negatives relative			
	(70)	Costs (€)	to all negative			
		Anticipation	cases (TN/(TN+FP))			
		-				
	Constitution in a	time (days)	Duranting			
7	Sensitivity	Savings (€)	Proportion of			
	(%)	Additional	actual positives			
		Costs (€)	correctly identified			
		Anticipation	(TP/(TP+FN))			
		time (days)				
8	Cohen's	Savings (€)	Measurement of			
	Kappa (%)	Additional	matches in the			
		Costs (€)	predictive tool			
		Anticipation	discounting the			
		time (days)	probability of			
			randomly matching			
9	Savings (€)		Cumulative		middle	1.1 Effective integration of
			measurement of			relevant digital technologies in
			savings associated			the energy sector resulting in
			to True Positives			integrated value chains
			considering a)			1.2 Efficient business processes
			Avoided			2.1 Enhance asset management
			breakdown			2.4 Creating new data-driven
			consequences + b)			business models, opportunities,
			Downtime cost			and innovative energy services
10	Additional		Increased costs due		high	1.1 Effective integration of
10	Costs (€)		to maintenance		ingii	relevant digital technologies in
	C0313 (E)		activities			the energy sector resulting in
			associated to False			integrated value chains
			Positives. They			1.2 Efficient business processes
			should be			2.1 Enhance asset management
			subtracted from			2.4 Creating new data-driven
			Savings to get the			business models, opportunities,
			net value.			and innovative energy services
11	Anticipation		For each True		high	1.1 Effective integration of
	time (days)		Positive it			relevant digital technologies in
			represents the			the energy sector resulting in
			delta Time			integrated value chains
			between the			1.2 Efficient business processes
			moment of			2.4 Creating new data-driven
			detection and the			business models, opportunities,
			time of failure			and innovative energy services
						4. Improving availability of big
						data and big data management
						& analysis facilities for real life
						scale research, simulation, and
						test purposes
	Kourse	formanco indica		Prodictivo Maint	ionanco for	MV/LV Transformers
	key per	iormance indica			lenance for	ww/Lv mansionmers
			-Asset H	lealth		

	D'-L		Risk decrease			
1 2	Risk decrease (€)		comparing risk- based maintenance supported by the tool to the ordinary preventive maintenance (equal maintenance expenditure is assumed in both cases)		high	 1.1 Effective integration of relevant digital technologies in the energy sector resulting in integrated value chains 1.2 Efficient business processes 2.1 Enhance asset management 2.4 Creating new data-driven business models, opportunities and innovative energy services
3	3 Maintenance cost savings (€)		Maintenance cost savings comparing risk-based maintenance supported by the tool to the ordinary preventive maintenance (equal risk level is assumed in both cases)		high	 1.1 Effective integration of relevant digital technologies in the energy sector resulting in integrated value chains 1.2 Efficient business processes 2.1 Enhance asset management 2.4 Creating new data-driven business models, opportunities, and innovative energy services
4	Useful Life Extension (years)		Based on the estimation of the RUL (Remaining Useful Time) it indicates the achievable extension of life relative to that indicated by the manufacturer		high	 1.1 Effective integration of relevant digital technologies in the energy sector resulting in integrated value chains 1.2 Efficient business processes 2.4 Creating new data-driven business models, opportunities, and innovative energy services 4. Improving availability of big data and big data management & analysis facilities for real life scale research, simulation, and test purposes
	Кеу ре	erformance Indic	ators LLUC P-2b- 02- N	Ion-technical loss	detection in S	Smart Grids
NTL-KPI-01 NTL-KPI-02	Global Losses Energy Percentage		Percentage of the energy that is provided from a MV substation or LV CT that is not settle to any consumer and is therefore lost. To be averaged in long periods (at least months). NTL-KPI-01 = NTL- KPI-02 + NTL-KPI- 03	Quantification of losses in the distribution grid of a DSO		
NTL-KPI-02 NTL-KPI-03	NTL Energy Percentage	gy Percentage of the Detection of				

			NTL-KPI-02 = NTL-		
			KPI-04 + NTL-KPI- 05		
NTL-KPI-04	Percentage en		Percentage of the energy that is provided from a MV substation or LV CT that is lost	Detection of non-technical losses	
NTL-KPI-05 Customer NTL Energy Percentage		 	due to NTL Percentage of the energy that is provided from a MV substation or LV CT that is lost due to fraud executed by customers. This portion of NTL is more likely to be avoided after it is detected, as legal actions can be taken against the connection point contractors.	Detection of non-technical losses	
NTL-KPI-06	Customer NTL Energy Percentage		Percentage of the energy that is provided from a MV substation or LV CT that is lost due to fraud executed by non- customers. This energy is stolen by non-permitted connections to the grid, which are difficult to be located physically.	Detection of non-technical losses	
NTL-KPI-06 NTL-KPI-07	True positives (TP)	 	Number of customers identified as fraud authors in the NTL identification scenario which are verified to be committing fraud	Detection of non-technical losses	
NTL-KPI-08	False positives (FP)	 	Number of customers identified as fraud authors in the NTL identification scenario which are not committing fraud, as result of a verification action	Detection of non-technical losses	

NTL-KPI-08	False	Number of	Detection of	
NTL-KPI-09	negatives	customers which	n non-technical	
	(FN)	are not identifie	d losses	
		as fraud authors	in	
		the NTL		
		identification		
		scenario but are		
		really committin	g	
		fraud		
NTL-KPI-10	True	Number of	Detection of	
	negatives	customers which	n non-technical	
	(TN)	are not identifie		
		as fraud authors	in	
		the NTL		
		identification		
		scenario, and ar	e	
		not really		
		committing frau		
NTL-KPI-11	Specificity	Proportion of tr		
	(%)	negatives relativ		
		to all negative	losses	
		cases (TN/(TN+F		
NTL-KPI-12	Sensitivity	Proportion of	Detection of	
	(%)	actual positives	non-technical	
		correctly identif	ied losses	
		(TP/(TP+FN))		
NTL-KPI-13	Cohen's	Measurement o		
	Kappa (%)	matches in the N		
		identification	losses	
		scenario		
		discounting the		
		probability of	:	
		randomly match	ing	

Table 7 Pilot 2b Electricity grid stability, connectivity, and life cycle KPIs and expected Impacts

6.5 Pilot 3a Office building: operation performance thanks to physical models and IA algorithms

	Key performance Indicators					Business Impacts		
ID	Name	Business achievement	Description	Reference to mentioned use case objectives	expected impact	Description		
	K	ey performance Ir	ndicators LLUC P-3a-01- O	ptimizing HVAC co	ontrol regarding	occupancy		
KPI- 1	Comfort during occupancy time		Comfort evaluated thanks to air temperature in the building in function of occupancy time. Percentage of occupancy below a certain level of comfort will be evaluated.	Optimizing comfort	high	 1.1 Effective integration of relevant digital technologies in the energy sector resulting in integrated value chains 1.2 Efficient business processes 2.1 Enhance asset management 2.4 Creating new data-driven business models, opportunities and innovative energy services 3.3 Cheaper and sustainable energy for consumers and maximising social welfare 		

PLATOON

KPI-	Unnecessary		Evaluate the	1 0		
2	HVAC heating		percentage of energy	energy		
	or cooling		emission that was	demand and		
	indicator		unnecessary regarding	GHG		
			the actual building	emissions		
			occupancy.			
			It is based on the			
			controls of heating or			
			cooling (percentage of			
			valve) during			
			unoccupied period			
KPI-	Gas and		Amount of gas and	Optimizing	low	3.2 Increased energy efficiency
3	electricity		electricity demand	energy		
	Consumption		used for heating and	demand and		
	by occupancy		cooling by occupancy	GHG		
	hour		hour of the building for	emissions		
			a given period (a			
			month, a year)			
KPI-	Climate		Amount of gas and	Optimizing		
4	adjusted Gas		electricity demand	energy		
	and electricity		used for heating and	demand and		
	Consumption		cooling, normalized for	GHG		
	by occupancy		a given climate, by	emissions		
	hour		occupancy hour of the			
			building for a given			
			period (a month, a year)			
			year)			
	Kov porform	anco Indicators III	IC P-22-02 - Providing	Domand Posno	nco Sorvico th	rough HV/AC control
K DI		ance Indicators LLU	UC P-3a- 02 - Providing			rough HVAC control
KPI-	Availability of	ance Indicators LLU	Percentage of days (%)	Contribute to	nse Service th high	
КРІ- 1	Availability of demand	ance Indicators LLL	Percentage of days (%) where demand	Contribute to the grid		2.4 Creating new data-driven
	Availability of demand response	ance Indicators LLL	Percentage of days (%) where demand response services can	Contribute to the grid management		2.4 Creating new data-driven business models, opportunities,
	Availability of demand response services	ance Indicators LL	Percentage of days (%) where demand response services can be provided for a given	Contribute to the grid management (reduce peak		2.4 Creating new data-driven business models, opportunities, and innovative energy services
	Availability of demand response services provided over		Percentage of days (%) where demand response services can be provided for a given offset capacity, in	Contribute to the grid management (reduce peak demand		2.4 Creating new data-driven business models, opportunities, and innovative energy services 1.1 Effective integration of
	Availability of demand response services provided over a certain		Percentage of days (%) where demand response services can be provided for a given offset capacity, in terms of power (kW)	Contribute to the grid management (reduce peak		2.4 Creating new data-driven business models, opportunities, and innovative energy services 1.1 Effective integration of relevant digital technologies in
	Availability of demand response services provided over a certain period		Percentage of days (%) where demand response services can be provided for a given offset capacity, in terms of power (kW) and/or energy (kWh).	Contribute to the grid management (reduce peak demand		2.4 Creating new data-driven business models, opportunities, and innovative energy services 1.1 Effective integration of relevant digital technologies in the energy sector resulting in
	Availability of demand response services provided over a certain		Percentage of days (%) where demand response services can be provided for a given offset capacity, in terms of power (kW) and/or energy (kWh). 2 Specific time slots	Contribute to the grid management (reduce peak demand		2.4 Creating new data-driven business models, opportunities, and innovative energy services 1.1 Effective integration of relevant digital technologies in the energy sector resulting in integrated value chains
	Availability of demand response services provided over a certain period		Percentage of days (%) where demand response services can be provided for a given offset capacity, in terms of power (kW) and/or energy (kWh). Specific time slots during the day can be	Contribute to the grid management (reduce peak demand		 2.4 Creating new data-driven business models, opportunities, and innovative energy services 1.1 Effective integration of relevant digital technologies in the energy sector resulting in integrated value chains 4. Improving availability of big
	Availability of demand response services provided over a certain period		Percentage of days (%) where demand response services can be provided for a given offset capacity, in terms of power (kW) and/or energy (kWh). 2 Specific time slots	Contribute to the grid management (reduce peak demand		 2.4 Creating new data-driven business models, opportunities, and innovative energy services 1.1 Effective integration of relevant digital technologies in the energy sector resulting in integrated value chains 4. Improving availability of big data and big data management
	Availability of demand response services provided over a certain period		Percentage of days (%) where demand response services can be provided for a given offset capacity, in terms of power (kW) and/or energy (kWh). Specific time slots during the day can be	Contribute to the grid management (reduce peak demand		 2.4 Creating new data-driven business models, opportunities, and innovative energy services 1.1 Effective integration of relevant digital technologies in the energy sector resulting in integrated value chains 4. Improving availability of big data and big data management & analysis facilities for real life
	Availability of demand response services provided over a certain period		Percentage of days (%) where demand response services can be provided for a given offset capacity, in terms of power (kW) and/or energy (kWh). Specific time slots during the day can be	Contribute to the grid management (reduce peak demand		 2.4 Creating new data-driven business models, opportunities, and innovative energy services 1.1 Effective integration of relevant digital technologies in the energy sector resulting in integrated value chains 4. Improving availability of big data and big data management
	Availability of demand response services provided over a certain period		Percentage of days (%) where demand response services can be provided for a given offset capacity, in terms of power (kW) and/or energy (kWh). Specific time slots during the day can be	Contribute to the grid management (reduce peak demand		 2.4 Creating new data-driven business models, opportunities, and innovative energy services 1.1 Effective integration of relevant digital technologies in the energy sector resulting in integrated value chains 4. Improving availability of big data and big data management & analysis facilities for real life scale research, simulation, and
1	Availability of demand response services provided over a certain period (month, year)		Percentage of days (%) where demand response services can be provided for a given offset capacity, in terms of power (kW) and/or energy (kWh). Specific time slots during the day can be targeted	Contribute to the grid management (reduce peak demand offset)	high	 2.4 Creating new data-driven business models, opportunities, and innovative energy services 1.1 Effective integration of relevant digital technologies in the energy sector resulting in integrated value chains 4. Improving availability of big data and big data management & analysis facilities for real life scale research, simulation, and test purposes
1 КРІ-	Availability of demand response services provided over a certain period (month, year)		Percentage of days (%) where demand response services can be provided for a given offset capacity, in terms of power (kW) and/or energy (kWh). Specific time slots during the day can be targeted	Contribute to the grid management (reduce peak demand offset)		 2.4 Creating new data-driven business models, opportunities, and innovative energy services 1.1 Effective integration of relevant digital technologies in the energy sector resulting in integrated value chains 4. Improving availability of big data and big data management & analysis facilities for real life scale research, simulation, and test purposes 2.4 Creating new data-driven
1	Availability of demand response services provided over a certain period (month, year)		Percentage of days (%) where demand response services can be provided for a given offset capacity, in terms of power (kW) and/or energy (kWh). Specific time slots during the day can be targeted Offset capacity, in terms of power (kW) or	Contribute to the grid management (reduce peak demand offset) Contribute to the grid	high	 2.4 Creating new data-driven business models, opportunities, and innovative energy services 1.1 Effective integration of relevant digital technologies in the energy sector resulting in integrated value chains 4. Improving availability of big data and big data management & analysis facilities for real life scale research, simulation, and test purposes 2.4 Creating new data-driven business models, opportunities,
1 КРІ-	Availability of demand response services provided over a certain period (month, year) Load offset capacity offered over a		Percentage of days (%) where demand response services can be provided for a given offset capacity, in terms of power (kW) and/or energy (kWh). Specific time slots during the day can be targeted Offset capacity, in terms of power (kW) or energy (kWh), available	Contribute to the grid management (reduce peak demand offset) Contribute to the grid management	high	 2.4 Creating new data-driven business models, opportunities, and innovative energy services 1.1 Effective integration of relevant digital technologies in the energy sector resulting in integrated value chains 4. Improving availability of big data and big data management & analysis facilities for real life scale research, simulation, and test purposes 2.4 Creating new data-driven business models, opportunities, and innovative energy services
1 КРІ-	Availability of demand response services provided over a certain period (month, year) Load offset capacity offered over a certain period		Percentage of days (%) where demand response services can be provided for a given offset capacity, in terms of power (kW) and/or energy (kWh). Specific time slots during the day can be targeted Offset capacity, in terms of power (kW) or energy (kWh), available for a given percentage	Contribute to the grid management (reduce peak demand offset) Contribute to the grid management (reduce peak	high	 2.4 Creating new data-driven business models, opportunities, and innovative energy services 1.1 Effective integration of relevant digital technologies in the energy sector resulting in integrated value chains 4. Improving availability of big data and big data management & analysis facilities for real life scale research, simulation, and test purposes 2.4 Creating new data-driven business models, opportunities, and innovative energy services 1.1 Effective integration of
1 KPI-	Availability of demand response services provided over a certain period (month, year) Load offset capacity offered over a		Percentage of days (%) where demand response services can be provided for a given offset capacity, in terms of power (kW) and/or energy (kWh). Specific time slots during the day can be targeted Offset capacity, in terms of power (kW) or energy (kWh), available	Contribute to the grid management (reduce peak demand offset) Contribute to the grid management (reduce peak demand	high	 2.4 Creating new data-driven business models, opportunities, and innovative energy services 1.1 Effective integration of relevant digital technologies in the energy sector resulting in integrated value chains 4. Improving availability of big data and big data management & analysis facilities for real life scale research, simulation, and test purposes 2.4 Creating new data-driven business models, opportunities, and innovative energy services 1.1 Effective integration of relevant digital technologies in
1 КРІ-	Availability of demand response services provided over a certain period (month, year) Load offset capacity offered over a certain period		Percentage of days (%) where demand response services can be provided for a given offset capacity, in terms of power (kW) and/or energy (kWh). Specific time slots during the day can be targeted Offset capacity, in terms of power (kW) or energy (kWh), available for a given percentage of days where the service is available.	Contribute to the grid management (reduce peak demand offset) Contribute to the grid management (reduce peak	high	 2.4 Creating new data-driven business models, opportunities, and innovative energy services 1.1 Effective integration of relevant digital technologies in the energy sector resulting in integrated value chains 4. Improving availability of big data and big data management & analysis facilities for real life scale research, simulation, and test purposes 2.4 Creating new data-driven business models, opportunities, and innovative energy services 1.1 Effective integration of relevant digital technologies in the energy sector resulting in
1 KPI-	Availability of demand response services provided over a certain period (month, year) Load offset capacity offered over a certain period		Percentage of days (%) where demand response services can be provided for a given offset capacity, in terms of power (kW) and/or energy (kWh). Specific time slots during the day can be targeted Offset capacity, in terms of power (kW) or energy (kWh), available for a given percentage of days where the service is available. Specific time slots	Contribute to the grid management (reduce peak demand offset) Contribute to the grid management (reduce peak demand	high	 2.4 Creating new data-driven business models, opportunities, and innovative energy services 1.1 Effective integration of relevant digital technologies in the energy sector resulting in integrated value chains 4. Improving availability of big data and big data management & analysis facilities for real life scale research, simulation, and test purposes 2.4 Creating new data-driven business models, opportunities, and innovative energy services 1.1 Effective integration of relevant digital technologies in the energy sector resulting in integrated value chains
1 KPI-	Availability of demand response services provided over a certain period (month, year) Load offset capacity offered over a certain period		Percentage of days (%) where demand response services can be provided for a given offset capacity, in terms of power (kW) and/or energy (kWh). 2 Specific time slots during the day can be targeted Offset capacity, in terms of power (kW) or energy (kWh), available for a given percentage of days where the service is available. 2 Specific time slots during the day can be	Contribute to the grid management (reduce peak demand offset) Contribute to the grid management (reduce peak demand	high	 2.4 Creating new data-driven business models, opportunities, and innovative energy services 1.1 Effective integration of relevant digital technologies in the energy sector resulting in integrated value chains 4. Improving availability of big data and big data management & analysis facilities for real life scale research, simulation, and test purposes 2.4 Creating new data-driven business models, opportunities, and innovative energy services 1.1 Effective integration of relevant digital technologies in the energy sector resulting in integrated value chains 4. Improving availability of big
1 KPI-	Availability of demand response services provided over a certain period (month, year) Load offset capacity offered over a certain period		Percentage of days (%) where demand response services can be provided for a given offset capacity, in terms of power (kW) and/or energy (kWh). Specific time slots during the day can be targeted Offset capacity, in terms of power (kW) or energy (kWh), available for a given percentage of days where the service is available. Specific time slots	Contribute to the grid management (reduce peak demand offset) Contribute to the grid management (reduce peak demand	high	 2.4 Creating new data-driven business models, opportunities, and innovative energy services 1.1 Effective integration of relevant digital technologies in the energy sector resulting in integrated value chains 4. Improving availability of big data and big data management & analysis facilities for real life scale research, simulation, and test purposes 2.4 Creating new data-driven business models, opportunities, and innovative energy services 1.1 Effective integration of relevant digital technologies in the energy sector resulting in integrated value chains 4. Improving availability of big data and big data management
1 КРІ-	Availability of demand response services provided over a certain period (month, year) Load offset capacity offered over a certain period		Percentage of days (%) where demand response services can be provided for a given offset capacity, in terms of power (kW) and/or energy (kWh). 2 Specific time slots during the day can be targeted Offset capacity, in terms of power (kW) or energy (kWh), available for a given percentage of days where the service is available. 2 Specific time slots during the day can be	Contribute to the grid management (reduce peak demand offset) Contribute to the grid management (reduce peak demand	high	 2.4 Creating new data-driven business models, opportunities, and innovative energy services 1.1 Effective integration of relevant digital technologies in the energy sector resulting in integrated value chains 4. Improving availability of big data and big data management & analysis facilities for real life scale research, simulation, and test purposes 2.4 Creating new data-driven business models, opportunities, and innovative energy services 1.1 Effective integration of relevant digital technologies in the energy sector resulting in integrated value chains 4. Improving availability of big data and big data management & analysis facilities for real life
1 KPI-	Availability of demand response services provided over a certain period (month, year) Load offset capacity offered over a certain period		Percentage of days (%) where demand response services can be provided for a given offset capacity, in terms of power (kW) and/or energy (kWh). 2 Specific time slots during the day can be targeted Offset capacity, in terms of power (kW) or energy (kWh), available for a given percentage of days where the service is available. 2 Specific time slots during the day can be	Contribute to the grid management (reduce peak demand offset) Contribute to the grid management (reduce peak demand	high	 2.4 Creating new data-driven business models, opportunities, and innovative energy services 1.1 Effective integration of relevant digital technologies in the energy sector resulting in integrated value chains 4. Improving availability of big data and big data management & analysis facilities for real life scale research, simulation, and test purposes 2.4 Creating new data-driven business models, opportunities, and innovative energy services 1.1 Effective integration of relevant digital technologies in the energy sector resulting in integrated value chains 4. Improving availability of big data and big data management

KPI- 3	Error on the HVAC load prediction over a certain period (no demand response event)	characterized over th period: mean, standar deviations, dai distribution, season distribution.	n accurate n prediction to n the e aggregator y e n n e e e d y y		
KPI- 4	Error on the flexibility prediction	comparison with th prediction.	al accurate n prediction for n the aggregator a e n n e		
KPI- 5	Error on the HVAC load prediction for days with load shifting programs	Error (%) on the HVA load predictic calculated every 30m as the errors betwee the predicted and th realized energ demand, divided by th predicted one (whe HVAC is operating). The error can b characterized over th period: mean, standar deviations, distributio during Demar response event.	n accurate n prediction to n the e aggregator y e n n e e e d n		
KPI- 6	Capacity to answer load interruptions request or programs from the Aggregator	Statistics concerning the implementation of the demand response request from the aggregator. The capacity to answer partially or totally the requests will be analysed.	of contract with e the aggregator e (and generate er income)	high	 2.4 Creating new data-driven business models, opportunities, and innovative energy services 1.1 Effective integration of relevant digital technologies in the energy sector resulting in integrated value chains 4. Improving availability of big data and big data management & analysis facilities for real life scale research, simulation, and test purposes

Table 8 Pilot 3a Office building: operation performance thanks to physical models and IA algorithms KPIs and expected impacts

						predictive models in the smart city									
		Key p	erformance indicator	S		Business Impacts									
ID	Name	Business achievem ent	Description	Reference to mentioned use case objectives	expecte d impact	Description									
	Кеу р	performance i	ndicators LLUC P-3b-	01 Building Heating & Cooling	demand Ana	lysis and Forecast									
PI_01 	PUE Decrease	CO2 Cost saving	% of reduction of PUE (by comparison with similar building or historical data) PUE = <u>(PUE old -</u> <u>PUE new</u>) x 100 PUE _{old}	 Energy efficiency plans (heating, cooling) Daily and hour energy demand forecast Building energy usage benchmark Ensure energy saving and costs reduction on selected buildings 	Low										
РІ_01 — КРІ02	kWh/Y/sq m	CO2 Cost saving	% of energy demand reduction (before/after) for each type of building	 Energy efficiency plans (heating, cooling) Daily and hour energy demand forecast Building energy usage benchmark Ensure energy saving and costs reduction on selected buildings 	high										
РІ_01 — КРІОЗ	kWh/Y/sq m	CO2 Cost saving	% of energy demand reduction (heating, cooling) for line of use of each type of building	 Daily and hour energy demand forecast Building energy usage benchmark Ensure energy saving and costs reduction on selected buildings 	high										
PI_01 _ KPI04	CO2	CO2	% of CO2 emission reduction	- Reduction of emissions (CO2 / TOE correlation)	high	3.3 Cheaper and sustainable energy for consumers and maximising social welfare 3.4 Carbon reduction									
РІ_01 КРІ05	Costs €	Energy usage reduction Economic benefit at standard price	Euros (€) saved	3b-02 Predictive maintenance c	f cooling P	1.1 Effective integration of relevant digital technologies in the energy sector resulting in integrated value chains 1.2 Efficient business processes 2.1 Enhance asset management 2.4 Creating new data-driven business models, opportunities, and innovative energy services									

6.6 Pilot 3b Advanced energy management system and spatial (multi-scale) predictive models in the smart city

PI_02 _K01	Mean Time Between Failure (MTBF) increase	Availabilit y	MTBF increase in heating and cooling plants due to the predictive analysis (expressed in %)	- Improve plants efficiency -Technical plants fine tuning - Increase the availability of heating/cooling plants	high	1.1 Effective integration of relevant digital technologies in the energy sector resulting in integrated value chains 1.2 Efficient business processes 2.4 Creating new data-driven business models, opportunities, and innovative energy services 4. Improving availability of big data and big data management & analysis facilities for real life scale research, simulation, and test purposes
PI_02 _ K02	Maintena nce cost reduction (cost/y/sq m)	Reduce maintena nce costs (number of emergenc y tickets) Reduce maintena nce costs (emergen cy tickets in %)	Evaluation of maintenance cost reduction for each building or total referred to the heating and cooling plants (expressed in %)	 Improve plants efficiency Reduce maintenance costs 	high	 1.1 Effective integration of relevant digital technologies in the energy sector resulting in integrated value chains 1.2 Efficient business processes 2.1 Enhance asset management 2.4 Creating new data-driven business models, opportunities, and innovative energy services
			ice indicators LLUC P-	3b-03 Lighting Consumption Es	timation &	-
PI_03 _ K01	Energy demand/ people presence	Reduce energy demand for lighting	Value of demand of the light plants compared with the number of people in the building	- Identify the correlation between the number of building user and the lighting demand	Low	1.1 Effective integration of relevant digital technologies in the energy sector resulting in integrated value chains 1.2 Efficient business processes 2.1 Enhance asset management 2.4 Creating new data-driven business models, opportunities, and innovative energy services
PI_03 _ K02	Lighting Cost saving	Reduce energy demand for lighting (% of building energy demand or KWh for lighting / sqm)	% of cost saving due to the adoption of new lighting lamps for each type of building	- Estimation and benchmarking between different lighting solutions - Optimization and reduction of lighting demand	Middle	 1.1 Effective integration of relevant digital technologies in the energy sector resulting in integrated value chains 1.2 Efficient business processes 2.1 Enhance asset management 2.4 Creating new data-driven business models, opportunities, and innovative energy services
PI_03 _ Knew	Lighting demand deviation	Increase lighting demand forecast accuracy	Deviation between actual and estimated lighting demand (expresses in %)		Middle	

PI_03 _ K04	Lighting demand reduction	Reduce energy demand for lighting	% of demand reduction due to the adoption of new lighting lamps for each type of building	 Estimation and benchmarking between different lighting solutions Optimization and reduction of lighting demand 	Middle	
PI_03 _ K04	GHG emissions	CO2 reduction	% GHG emissions per square meter due to lighting in different scenarios	 Estimation and benchmarking between different lighting solutions GHG emission reduction 	Middle	3.3 Cheaper and sustainable energy for consumers and maximising social welfare 3.4 Carbon reduction

 Table 9 Pilot 3b Advanced energy management system and spatial (multi-scale) predictive models in the smart city KPIs and expected impacts

6.7 Pilot 3c Energy efficiency and predictive maintenance in the smart tertiary building hubgrade

		Key performa	Business Impacts								
ID	Name	Business achievement	Description	Reference to mentioned use case objectives	expected impact	Description					
	Key performance Indicator LLUC P-3c 01 Advanced EMS for Tertiary Buildings										
KPI- 01	Energy Bill reduction		The KPI will evaluate the energy bill reduction achieved	Reduce the energy bill	high	 1.1 Effective integration of relevant digital technologies in the energy sector resulting in integrated value chains 1.2 Efficient business processes 2.1 Enhance asset management 2.4 Creating new data-driven business models, opportunities, and innovative energy services 					
KPI- 02	RES ratio		The KPI will evaluate the RES usage versus overall energy consumption.	Maximize the RES usage	high	 1.1 Effective integration of relevant digital technologies in the energy sector resulting in integrated value chains 1.2 Efficient business processes 2.4 Creating new data-driven business models, opportunities, and innovative energy services 3.0 Contribution to increasing the use of renewable energy and increased energy efficiency based on optimised energy asset management, offering access to cheaper and sustainable energy for energy consumers and maximising social welfare 4. Improving availability of big data and big data management & analysis facilities for real life scale research, simulation, and test purposes 3.4 Carbon reduction 					
	Key performance Indicator LLUC P-3c 02 Predictive Maintenance in Smart Tertiary Building Assets										

AV- 01	Availability	It is the availability of the asset in a period. As a mathematical formula it would be equal to Working Time divided by Total Time. We can consider Total Time as the time that the asset must be working or the physical time (24 hours a day)	The objective is to increase the availability of the assets	high	 1.1 Effective integration of relevant digital technologies in the energy sector resulting in integrated value chains 1.2 Efficient business processes 2.4 Creating new data-driven business models, opportunities, and innovative energy services 4. Improving availability of big data and big data management & analysis facilities for real life scale research, simulation, and test purposes
UL- 01	Useful Life	It is important to maximize the useful life of each asset. This is done based on various concepts: • Early detection of possible breakdowns • Correct performance of own maintenance tasks (corrective / preventive) • Working with assets in suitable conditions for them (not forcing work in unsuitable conditions, etc.) The mathematical formula is the total time (in hours) that the asset has operated until it has finally been replaced	The objective is to increase the useful life of the assets	high	 1.1 Effective integration of relevant digital technologies in the energy sector resulting in integrated value chains 1.2 Efficient business processes 2.4 Creating new data-driven business models, opportunities, and innovative energy services 4. Improving availability of big data and big data management & analysis facilities for real life scale research, simulation, and test purposes
MC- 01	Maintenance Costs (Total maintenance costs)	The maintenance cost of an asset is the sum of the costs of the work orders that have been carried out on that asset. It is important to indicate that maintenance costs may be higher in some assets that use predictive maintenance. Therefore, the goal should be achieving the lowest possible cost in the set of assets. Thus, the formula is the sum of the maintenance costs of the assets selected for the use case.	The objective is to reduce the total maintenance costs of the assets	high	 1.1 Effective integration of relevant digital technologies in the energy sector resulting in integrated value chains 1.2 Efficient business processes 2.1 Enhance asset management 2.4 Creating new data-driven business models, opportunities, and innovative energy services

 Table 10 Pilot 3c Energy efficiency and predictive maintenance in the smart tertiary building hubgrade KPIs

 and expected impacts

Key performance indicators Key performance indicator LLUC P-4a- 01 - Energy Management of Min ID Name Business achievement Description Reference to mentioned use case objectives expected impact kpi- Energy availability Optimal energy demand (increase in energy Optimization for renewable high	Description 1.1 Effective integration of relevant digital technologies in the energy sector resulting in
IDNameBusiness achievementDescriptionReference to mentioned use case objectivesexpected impactkpi- 1Energy availabilityOptimal energy demand (increase in energyOptimization renewablefor high	Description 1.1 Effective integration of relevant digital technologies in the energy sector resulting in
1 availability (increase in energy renewable	relevant digital technologies in the energy sector resulting in
availability) electricity generation Smart storage/generation	integrated value chains 1.2 Efficient business processes 2.4 Creating new data-driven business models, opportunities, and innovative energy services 3.0 Contribution to increasing the use of renewable energy and increased energy efficiency based on optimised energy asset management, offering access to cheaper and sustainable energy for energy consumers and maximising social welfare 4. Improving availability of big data and big data management & analysis facilities for real life scale research, simulation, and test purposes 3.4 Carbon reduction
kpi- Cost Reduction of maintenance effort and costs Optimization for renewable electricity generation high	 1.1 Effective integration of relevant digital technologies in the energy sector resulting in integrated value chains 1.2 Efficient business processes 2.1 Enhance asset management 2.4 Creating new data-driven business models, opportunities, and innovative energy services
kpi- Forecast Energy availability Reduced forecasting errors Generation load forecast and	
kpi- 4Realtime availability CostEnergy Ability to monitoring/analyse/optimize data and the system at real time rateEMS with real-time processing Smart storage/generation	

6.8 Pilot 4a Energy management of microgrids

 Table 11 Pilot 4a Energy management of microgrids KPIs and expected impacts

7. Conclusion

This deliverable evaluates PLATOON project impacts with a focus on the opportunities to use big data use big data, advanced analytics, and open data to solve problems faced by the energy sector. It is strongly related to the WP6 - Large Scale Pilot Implementation and Validation, which however builds up upon the remaining work packages.

Energy sector from infrastructure perspective as well as from source efficiency, global competitiveness, and quality of life are very important for Europe. This deliverable provides first an overview of the available data sources, key challenges to unlock new innovative opportunities, their uses cases in the different categories of Big Data value, as well as energy efficiency, availability, customer experience and new business model helped identifying PLATOON stakeholders needs for big data applications. The evaluation of these needs and challenges demonstrated that the existing big data analytics technologies as employed by the business and big data platforms providers will not fully cater the energy sector and will not be sufficient. Therefore, the objectives defined within PLATOON and its seven large scale demonstrators will provide services and functionalities to take the big data analytics services and application in the energy sector beyond the state of the art. The PLATOON consortium will concentrate efforts to generate value by adapting and applying big data analytics technologies within their specific application domains all over the energy value chain and adding value-use cases. The outcomes of PLATOON will be applied for:

• Ensuring smart grid stability, load forecast (Pilot 2a-LLUC-03) and prediction of energy demand for planning and managing energy network resources and trading (Pilot 2a-LLUC-01 Pilot 2a-LLUC-02, Pilot 3a, Pilot 3b, Pilot 3c and Pilot 4a).

• Improving malfunction diagnosis and predictive maintenance, either on the production side (in plant facilities, see Pilot 1a, Pilot 2a-07, Pilot 2b, Pilot 3b and Pilot 3c) or health state estimation, and identifying locations and forecasting future line outages to decrease the outage costs and improve system reliability.

• Profiling user behaviours to adjust individual consumption patterns and to design policies for specific users (Pilot 2b, 3a, 3b and 3c).

• Advanced visualization is one of the key application area of big data analytics that can improve the overall assessment of smart grids. Big data analytics with the visualization technologies is used for monitoring real-time power system status as well as accurate grid connectivity information (All pilots).

Furthermore, to move from general impacts of PLATOON the cases to measurables indicators of the impact, the deliverable D8.1 provides an overview of the key indicators provided on the project agreement as expressed impacts. This KPIs will be evaluated within the different PLATOON uses cases, along the project using different assessment tools (Tests, simulations, or any other assessment tool).

It is important to note, that the KPIs metrics that drive the uses cases impacts shall be evaluated and challenged during the project. If needed, further updates can be added in the upcoming PLATOON deliverables.